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We consider the multiplication operator, M, in Sobolev spaces with respect to
general measures and give a characterization for M to be bounded, in terms of
sequentially dominated measures. This has important consequences for the
asymptotic behaviour of Sobolev orthogonal polynomials. Also, we study proper-
ties of Sobolev spaces with respect to measures.  © 2001 Academic Press
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1. INTRODUCTION

Weighted Sobolev spaces are an interesting topic in many fields of math-
ematics (see, e.g., [ HKM, K, Ku, KO, KS, T]. In [ELWI1, EL, ELW2]
the authors study some examples of Sobolev spaces with respect to general
measures instead of weights, in relation with ordinary differential equations
and Sobolev orthogonal polynomials. The papers [ RARP1, RARP2] are
the beginning of a theory of Sobolev spaces with respect to general
measures. We are interested in the relationship between this topic and
Sobolev orthogonal polynomials.

Let us consider 1 <p < oo and p=(uy, .., itz) a vectorial Borel measure
in R with 4 := Uf;o supp x;. The Sobolev norm of a function f of class
CK(R) in W*?(A, u) is defined by

k
1A brai= X [ LFDI7 d.
j=0
We talk about Sobolev norm although it can be a seminorm; in this case
we will take equivalence classes, as usual.
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We say that ue.# if every polynomial belongs to L'(uq)L'(u;)
A -~ nL'(uy). Therefore if pe.#, every polynomial belongs to
LP(ug) 0 LP(uq) -+ n LP(u,) for any 1 <p < oo. Obviously, every ue .4
is finite. If 4 is a compact set, we have u e .# if and only if u is finite. If
we ., we denote by P%?(A, 1) the completion of polynomials P with the
norm of W% ?(A4, i). By a theorem in [LP] we know that the zeros of the
Sobolev orthogonal polynomials with respect to the scalar product in
W*2(4, u) are contained in the disk {z:|z| <2 | M|}, where the multi-
plication operator (Mf)(x)=x f(x) is considered in the space P*2(4, u).
Consequently, the set of the zeros of the Sobolev orthogonal polynomials
is bounded if the multiplication operator is bounded. The location of these
zeros allows to prove results on the asymptotic behaviour of Sobolev
orthogonal polynomials (see [ LP]).

In [LP] also appears the following result: If 4 is a compact set and u
is a finite measure in A4 sequentially dominated, then M is a bounded
operator in P%2(4,u), where the vectorial measure u is sequentially
dominated if #supp o= o0 and du;= f;du;_; with f; bounded for 1<
j<k. In that paper the authors ask for other conditions on M to be
bounded.

It is not difficult to see that the multiplication operator can be bounded
when the vectorial measure is not sequentially dominated. In Section 4
below and in [ RARP2] other conditions are given in order to have the
boundedness of M.

Now, let us state the main results here. We refer to the definitions in
Sections 2 and 4. In the paper, the results are numbered according to the
section where they are proved.

Here we obtain the following characterization for the boundedness of the
multiplication operator in terms of comparable norms. Observe that this
characterization is closely related to sequentially dominated measures,
since we say that a vectorial measure u belongs to the class ESD (extended
sequentially dominated) if and only if du;= f;du; , with f; bounded for
1<j<k

THEOREM 4.1. Let us consider 1 <p < oo and u = (ig, .-, ity) a finite vec-
torial measure with A a compact set. Then, the multiplication operator is
bounded in P* P (A, u) if and only if there exists a vectorial measure ' € ESD
such that the Sobolev norms in W*?(A, u) and W*?(A, u') are comparable
on P. Furthermore, we can choose p' =(ug, .., 1u3) with 'y :=pu;+u; 4
+ o Uk

We have also necessary conditions and sufficient conditions for M to be
bounded. The following are the most important.
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THEOREM 4.3. Let us consider 1 <p < oo and a finite vectorial measure
u with A a compact set. Assume that (4%, u*)e %, and that for each
1< j<k we have u(A\(J,_, v K;_,)) =0, where K;_, is a finite union of
compact intervals contained in QU~", and J,_, is a measurable set with
du;= f;du; y in J;_| and f; bounded. Then the multiplication operator is
bounded in P*?(4, u).

THEOREM 4.4. Let us consider 1 <p<oo and u= (g, .., itx) a finite
vectorial measure such that A is a compact set and there exist 1,>0, x, €R
and 0 <ko <k with u;([xo—10, Xo+n0]) =0 for ko< j<k. Let us assume
that xo is neither right nor left (ko—1)-regular. If p ({xo})>0 and
tx,—1({Xo} ) =0, then the multiplication operator is not bounded in P*?(4, p).

THEOREM 4.5. Let us consider 1 <p<oo and u=(ugy, .., Ux) a finite
vectorial measure with A a compact set. Assume that there exist x, € R,
¢>0, 0<ky<k and an open neighbourhood U of x, such that

dity 41 (x) < |x — o dty (),

SJor xe U\{xo} and ko< j<k. If there exists i>ky with pu;({xe})>0
and p;_({xo})=0, then the multiplication operator is not bounded in
Per(4, ).

In order to prove these results we also obtain some results on Sobolev
spaces with respect to measures, which are interesting by themselves.

THEOREM 3.1. Let us consider 1 <p<oo and pu=(ugy, .., 1tx) a finite
vectorial measure with A a compact set. Assume that there exist x, € R and
0 < ko <k with pu ({Xo}) =0 and satisfying the following property if ko <k:
there exist an open neighbourhood U of x, and ¢ >0 such that

du; 1 (x) <c|x—xol? du(x),
for xe U and ko< j<k. Let us define
V= (0, oy 0, 04 O s Oy 4105 woes A0 x,)

and N:= #{ko<j<k:o;>0}. Given a Cauchy sequence {q,} =P in
Whe(A, 1) and uy, ..., u; €R there exists a Cauchy sequence {r,} = P in
WoP(A,w)  with 1im, ., o g, =yl weea =0 and P (xo)=u; for
ko< j<k. Consequently P*?(A, u+v) is isomorphic to P57 (A, u) x RY.

THEOREM 3.3. Let us consider 1 <p < oo and u=(ug, ..., i) a vectorial
measure such that there exist ny>0, xo€R and 0<ky,<k with
ﬂj([xo_’?m Xo+10]) <00 for 0< j<k, and /"j([xO_r]07 Xo+10])=0 for
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ko< j<k (if ko<k). Let us assume that x, is neither right nor left
(ko—1)-regular and that p,,_({xo})=0. Then, for any 0 <y <1, there is
no positive constant ¢, with

ey 1SS D (xo) < S Wk p(4, 1)

Jor every fe CZ([xo—1, xo+1])
If we have also that u is finite and A is a compact set, then there is no
positive constant ¢, with

ez 1q" ™D (x0)| < Nl wi pea, uys
for every qeP.

We also obtain results which allow to decide in many cases when two
norms are comparable. We have also localization results on the multiplica-
tion operator. Now we present the notation we use.

Notation. 1In the paper k> 1 denotes a fixed natural number; obviously
WO P (A, ;)= LP(A, u). All the measures we consider are Borel and positive
on R; if a measure is defined on a proper subset E =R, we define it on R\E
as the zero measure. Also, all the weights are non-negative Borel
measurable functions defined on R. If the measure does not appear
explicitly, we mean that we are using Lebesgue measure. We always work
with measures which satisfy the decomposition du;=d(u;),+d(u;). =
d(p;)s+ h dx, where (u;), is singular with respect to Lebesgue measure,
(1) 4c 1s absolutely continuous with respect to Lebesgue measure and /£ is
a Lebesgue measurable function (which can be infinite in a set of positive
Lebesgue measure); obviously the Radon—Nikodym Theorem gives that
every o-finite measure belongs to this class. Given a vectorial measure u
and a closed set E, we denote by W* ?(E, u) the space W*?(ANE, u|y).
We denote by supp v the support of the measure v. If 4 is a Borel set,
|41, x A, int(A4) and # A4 denote, respectively, the Lebesgue measure, the
characteristic function, the closure, the interior and the cardinality of 4. By
1 we mean the j th distributional derivative of f. P and P, denote respec-
tively the set of polynomials and the set of polynomials with degree less
than or equal to n. We say that an n-dimensional vector satisfies a one-
dimensional property if each coordinate satisfies this property. Finally, the
constants in the formulae can vary from line to line and even in the same
line.

The outline of the paper is as follows. Section 2 presents most of the
definitions we need to state our results. We prove some useful results on
Sobolev spaces in Section 3. Section 4 is dedicated to the proof of the
results for the multiplication operator.
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2. DEFINITIONS AND RESULTS

Obviously one of our main problems is to define correctly the space
W (A, u). There are two natural definitions:

(1) W"r2(4,u) is the biggest space of (classes of) functions f which
are regular enough to have | /| 4, ) < 0.

(2) WkP(4, ) is the closure of a good set of functions (e.g., C*(R)
or P) with the norm |- || s 4, )-

However, both approaches have serious difficulties:

We consider first the approach (1). It is clear that the derivatives f
must be distributional derivatives in order to have a complete Sobolev
space. Therefore we need to restrict the measures u to a class of p-admis-
sible measures (see Definition 8). Roughly speaking u is p-admissible if (x;),,
for 0 < j<k, is concentrated on the set of points where /) is continuous,
for every function f of the space, because otherwise f is determined, up
to zero-Lebesgue measure sets (see Definitions 4 and 9 below). This will
force (u;), to be identically zero. However, there will be no restriction on
the support of (uy),.

This reasonable approach excludes norms appearing in the theory of
Sobolev orthogonal polynomials. Even if we work with the simpler case of
the weighted Sobolev spaces W% ?(4, w) (measures without singular part)
we must impose that w; belongs to the class B, (see Definition 2 below) in
order to have a complete weighted Sobolev space (see [ KO, RARP1]).

The approach (2) is simpler: we know that the completion of every
normed space exists (e.g., (C*(R), |||y o4, uy) OF (P, |- | wenca, ) We
have two difficulties. The first one is evident: we do not have an explicit
description of the Sobolev functions as in (1) (in Section 4 of [ RARP2]
there are several theorems which show that both definitions of Sobolev space
are the same for p-admissible measures). The second problem is worse: The
completion of a normed space is by definition a set of equivalence classes
of Cauchy sequences. In many cases this completion is not a function space
(see Theorem 3.1 below and its Remark).

However, since we need to work with the multiplication operator in
P% (4, u), we have to choose this second approach if x is not p-admissible.

First of all, we explain the definition of generalized Sobolev space in
[RARPI1]. We start with some preliminary definitions.

DerFiniTION 1. We say that two positive functions u, v are comparable
on the set A if there are positive constants c¢,, ¢, such that c¢;v(x) <u(x)
< c,v(x) for almost every x € 4. Since measures and norms are functions
on measurable sets and vectors, respectively, we can talk about comparable
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measures and comparable norms. We say that two vectorial weights or
vectorial measures are comparable if each component is comparable.

In what follows, the symbol a = b means that a and b are comparable
for a and b functions, measures or norms.

Obviously, the spaces L?(A4,u) and L?(A4,v) are the same and have
comparable norms if ¢ and v are comparable on A. Therefore, in order to
obtain our results we can change a measure x4 to any comparable measure v.

Next, we shall define a class of weights which plays an important role in
our results.

DerFiNnITION 2. If 1<p<oo, we say that a weight w belongs to
B,([a, b]) if and only if

wle LY®=D([q b]).

Also, if J is any interval we say that we B,(J) if we B,(I) for every

P
compact interval /< J. We say that a weight belongs to B,(J), where J is

p
a union of disjoint intervals (J;. 4 J;, if it belongs to B,(J/,), for i€ A.

Observe that if v>w in J and we B,(J), then ve B,(J).

The class B,(R) contains the classical 4,(R) weights appearing in
harmonic analysis (see [ Mul, GR]). The classes B,(£2), with 2 =R”", and
A,(R") (1 <p<oo) have been used in other definitions of weighted
Sobolev spaces in [ KO, K], respectively.

DerFINITION 3. We denote by AC([ a, b]) the set of functions absolutely
continuous on [a, b], i.e., the functions f € C([a, b]) such that f(x) — f(a)
=ij‘ f'(t)dt for all xe[a, b]. If J is any interval, AC,,.(J) denotes the set
of functions absolutely continuous on every compact subinterval of J.

DEerFINITION 4. Let us consider 1 <p < oo and a vectorial measure y =
(Lo, - tty) With absolutely continuous part w=(wy, ..., w;). For 0 <<k
we define the open set

Q,;:={xeR:3 an open neighbourhood ¥ of x with w; e B,(V)}.

Observe that we always have w; € B,(L;) for any 1 <p<oo and 0<
Jj<k. In fact, Q; is the greatest open set U with w; € B,(U). Obviously, Q;
depends on w and p, although p and x do not appear explicitly in the symbol
Q{-. Applying Holder’s }nequallty it is easy to check that if fPeL? (2;, w))
with 1< j<k, then Ve L}, (Q;) and fV"Ve AC,.(2)).

HYPOTHESIS.  From now on we assume that w; is identically 0 on the com-
plement of Q;.
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Remark. We need this hypothesis in order to have complete Sobolev
spaces (see [ KO, RARPI1]). This hypothesis is satisfied, for example, if we
can modify w; in a set of zero Lebesgue measure in such a way that there
exists a sequence «,, 0 with w'{(«,, 001} open for every n. If w; is lower
semicontinuous, then this condition is satisfied.

The following definitions also depend on w and p, although w and p do
not appear explicitly.

Let us consider 1 <p < o0, = (ug, ..., 4z) a vectorial measure and y € 4.
To obtain a greater regularity of the functions in a Sobolev space we con-
struct a modification of the measure ¢ in a neighbourhood of y, using the
following Muckenhoupt weighted version of Hardy’s inequality (see [ Mu2;
M, p.44]). This modified measure is equivalent in some sense to the
original one (see Theorem A below).

Muckenhoupt inequality. Let us consider 1 <p < oo and u,, u, measures
in (a, b ] with w, :=du, /dx. Then there exists a positive constant ¢ such
that

fb g(t) dt

X

<c gl zea 51,1y
LP((a, b1, py)

for any measurable function g in (a, b], if and only if

sup po((a, r]) [wi! | Lvo-1Lr, b7) < OO-

a<r<b

DEFINITION 5. A vectorial measure & = (f, ..., flz) 1s a right completion
of a vectorial measure u= (uq, ..., itz) With respect to y, if g, :=u, and
there is an ¢ >0 such that 4, :=u; on the complement of (y, y +¢] and

/Ij:zluj—i_/jjs on (ys y+8] fOI' O<J<k’
where /i; is any measure satisfying:

(1) Z((y, y+el])<oo,
(i) A, (d;, ;4 ,) < 00, with

d —1
A,(v,0):= sup v((y,r])H(df)

y<r<y+e

LYP=D([r, y+e])

The Muckenhoupt inequality guarantees that if fWWeL?(u ;) and
fYtVelL?(a;,,), then fV e L? (). If we work with absolutely continuous
measures, we also say that a vectorial weight w is a completion of u (or of w).
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ExaMpPLE. It can be shown that the following construction is always a
completion: we choose Ww,;:=0 if w,,; ¢ B,((y, y+e]); if w;,; €B, ([,
y+e])wesetw(x):=1lin [y, y+el;and if w;,; € B,((y, y+e])\B,([ ),
y+e]) we take w;(x):=1for xe[y+¢/2, y+e], and

5 d y+e —p+1
S

_(p= D)) e
(e ey

if 1<p<oo,

W;(x) _”Wj+1HL°0([x y+e])+d (HWI_;.lHLw([x y+g])) if p=1,

for xe(y, y+¢/2).

Remarks. (1) We can define a left completion of x4 with respect to y
in a similar way.
(2) Ifw;,,e€B,([y, y+e]), then 4,(j;, w;, )< oo for any measure
f; with fi;((y, y +&]) < oo. In particular, 4,(1,w;, ) < c.
(3) If u, v are comparable measures, v is a right completion of v if
and only if it is comparable to a right completion g of u.

(4) 1If u, v are two vectorial measures with the same absolutely con-

tinuous part, then g is a right completion of x if and only if it is a right
completion of v.

DerFINITION 6. For 1 <p< oo and a vectorial measure i, we say that a
point y € R is right j-regular (respectively, left j-regular), if there exist ¢ >0,
a right completion W (respectively, left completion) of x and j<i<k such
that w; € B,([ y, y +¢]) (respectively, B,([y —¢, y])). Also, we say that a
point y € R is j-regular, if it is right and left j-regular.

Remarks. (1) A point y e R is right j-regular (respectively, left
j-regular), if at least one of the following properties is satisfied:

(a) There exist ¢>0 and j<i<k such that w;eB,([y, y+¢])
(respectively, B,([ y —e, y])). Here we have chosen ;= 0.

(b) There exist e>0, j<i<k, x>0, and d <(i—j) p—1, such that
wi(x)=a|x—y|°,  for almost every xe[y, y+e]

(respectively, [ y—¢, y]). See Lemma 3.4 in [ RARPI1].

(2) If y is right j-regular (respectively, left), then it is also right
i-regular (respectively, left) for each 0 <i< j.
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(3) We can take i=j+ 1 in this definition since by the second
remark after Definition 5 we can choose w,=w;+1€B,([y, y +¢]) for
j<l<iifj+1<i

(4) If u, v are two vectorial measures with the same absolutely con-
tinuous part, then y is right j-regular (respectively, left) with respect to u
if and only if it is right j-regular (respectively, left) with respect to .

When we use this definition we think of a point {5} as the union of two
half-points {s*} and {b~}. With this convention, each one of the follow-
ing sets

(a,b)yu(b,c)u{b™} =(a,b)u[b™,c)#(a,c),
(a,b)yu(b,c)u{b} =(a,b]1uU(b,c)#(a,c),

has two connected components, and the set
(a,b)u(b,c)u{b }u{b*}=(a,b)u(b,c)u{b}=(a,c)

is connected.

We only use this convention in order to study the sets of continuity of
functions: we want that if f'e C(A4) and f e C(B), where A and B are union
of intervals, then f € C(4 U B). With the usual definition of continuity in an
interval, if fe C([a, b)) n C([b, ¢]) then we do not have fe C([a, c]). Of
course, we have fe C([a, c]) if and only if fe C([a, b~ ])nC([b™, c]),
where, by definition, C([b™*, ¢])=C([b, ¢]) and C([a, b~ ])=C([a, b]).
This idea can be formalized with a suitable topological space.

Let us introduce some notation. We denote by Q) the set of j-regular
points or half-points, ie., y € Q2 if and only if y is j-regular, we say that
y* e QY if and only if y is right j-regular, and we say that y~ e Q) if and
only if y is left j-regular. Obviously, Q¥ =@f and Q;,, U --- UQ, = QY.
Observe that Q¢ depends on p (see Definition 6).

Remark. If 0<j<k and I is an interval, 1= QY then the set
INQ;,, U -+ UQ,) is discrete (see the Remark before Definition 7 in
[RARPI1]).

DEerFINITION 7. We say that a function / belongs to the class AC,,.(2)
if he AC,,,(I) for every connected component I of Q.

DerFINITION 8. We say that the vectorial measure u= (ug, ..., ;) 1S
p-admissible if (x;),(R\Q) =0 for 1 <j<k.

We use the letter p in p-admissible in order to emphasize the dependence
on p (recall that Q) depends on p).
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Remarks. (1) There is no condition on supp ().
(2) We have (u;), =0, since Q¥ = .
(3) Every absolutely continuous measure is p-admissible.

DEerFINITION 9 (Sobolev Space). Let us consider 1<p<oo and u=
(o, - ) a p-admissible vectorial measure. We define the Sobolev space
Wk P(A, 1) as the space of equivalence classes of

VEr(A,u):={f 4> C/fPeAC,.(2Y) for 0<j<k and
Hf(j)HLP(A,ﬂj) <o for 0<j <k},

with respect to the seminorm

k ) 1/p
lwisia=( T 17 )
j=0

Remarks. This definition is natural since when the (u;),-measure of the
set where |/ is not continuous is positive, the integral ||/ |? d(u;),
does not make sense. If we consider Sobolev spaces with real valued func-
tions every result in this paper also holds.

At this moment we can consider also norms like the following:
1 0 1 1

A A e e VA LR VA LR V(RS
—1 —1 0

NS TRV

In the second example, we can write |f(0)|? instead of | f(0*)|?, since f is
not defined at the left of 0, and then this causes no confusion. Obviously
we always write (a +b) J, instead of a 0> +bJ; .

DEeFINITION 10. Let us consider 1<p<oo and u a p-admissible
vectorial measure. Let us define the space (4, u) as

H (A, 1) = {g; QO _ Clge Vk’P(Q(O)a Uloo), llgll Wk p(Q0), 1] (0)) :O}

H(4,p) is the equivalence class of 0 in W5?2(Q© y|,0). It plays an
important role in the general theory of Sobolev spaces and in the study of
the multiplication operator in Sobolev spaces in particular (see [ RARPI,
RARP2], Theorem A below, and Theorem C in Section 4).
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DerFiNITION 11. Let us consider 1 <p<oo and u a p-admissible
vectorial measure. We say that (4, u) belongs to the class %, if there exist
compact sets M, which are a finite union of compact intervals, such that

(1) M, intersects at most a finite number of connected components
of Q,u --- LQ,,

(ii) A (M,, 1) =10},

(iv) U, M,=QO.

We say that (4, u) belongs to the class % if there exists a measure
o =HMo+ Xmep Cmdx With ¢, >0, {x,} =Q®, D=N and (4, ') €%,
where ' = (ug, i1, - 4s) 1s minimal in the following sense: there exists
{M,} corresponding to (4, u')€e%, such that if u§ =pq — Cpy0s,, With
my €D and u" = (ug, p1, - i), then (M, u") #{0} if x,, € M,,.

Remarks. (1) The condition (4, u) €% is not very restrictive. In fact,
the proof of Theorem A below (see [ RARPI, Theorem 4.3]) gives that if
QO\(Q, U -+ ULQ,) has only a finite number of points in each connected
component of Q(?, then (2, u) € 6. If furthermore # (4, ) = {0}, we have
(A’ /’t) € (g0'

(2) Since the restriction of a function of % (A u) to M, is in
H (M, p) for every n, then (4, u) € 6, implies A" (4, u) ={0}.

(3) If(4,u)e%,, then (4, u)e €, with ' = p.

(4) The proof of Theorem A below gives that if for every connected

component 4 of Q, U --- UQ, we have #(A, ,u = {0}, then (4, u) € %,.
Condition #supp fo| 7400 =k implies A (A, u) = {0}.

The next results, proved in [ RARP1], play a central role in the theory
of Sobolev spaces with respect to measures (see the proofs in [ RARPI,
Theorems 4.3 and 5.1]).

THEOREM A. Let us suppose that 1 <p<oo and p= (g, ... Uz) IS a
p-admissible vectorial measure. Let K; be a finite union of compact intervals
contained in QVY, for 0 < j <k and i a right (or left ) completion of u. Then:

(a) If (4, u)e%, there exist positive constants ¢y =c;(Ky, oy Ki_1)
and c,=c,(it, Ky, ..., Ky _ ) such that

k—1
¢y Z Hg(j)|‘L°°(Kj)<HgH Wk (4, u)>
j=0

o, gl Wk, z) S lell Wk r(4, 1> Vge Vk’p(Aa .
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(b) If (4,u) €€ there exist positive constants c¢3=c5(Kqy, ..., Kx_1)
and c,=c, (i1, Ky, .., K, _1) such that for every ge V*?(4, u), there exists
g0 € V5 P(4, 1), independent of Ky, ..., K, _,, c5, ¢4 and fi, with

1go— &l Wk p(A, u) = 0,

k—1
C3 Z \Igﬁ)’)l\m(zg)é lgoll whp(4, u) = lel Wk P4, u)s
j=0

sl &oll W4, q) S Il Wk p(4, 1)+

Furthermore, if g, fo are these representatives of g, f respectively, we have
for the same constants c5, ¢4

k—1
C3 Z Hgé’)—fﬁ)’)l\m(Kj)S lg—fl wkp(4, 1)»
j=0

cqllgo—foll wh o4, 1) S lg—fl wk (4, u)-

Remark. Theorem A is proved in [RARP1] with the additional
hypothesis that g :=g —u is absolutely continuous, since [ RARP1] only
uses absolutely continuous completions, but the same proof also works in
the general case.

THEOREM B. Let us consider 1 <p < oo and u=(ug, ..., i) @ p-admissible
vectorial measure with (A, )€ %. Then the Sobolev space WP (A, u) is
complete.

3. RESULTS ON SOBOLEV SPACES

We start this section with a technical result which shows how to modify
a measure in order to have (4, i) € ,. We use this proposition in the proof
of Corollary 3.2 below.

ProrosiTION 3.1.  Let us consider 1 <p < oo and u= (g, ..., ity) a p-ad-
missible vectorial measure. Then there exists a measure g = o with u& — o
discrete and finite, (u& — uo)(R\Q®) =0, and such that u* := (u&, y, ..., i)
is p-admissible and (4, u*)e%,. We have also V*?(d,u)nL*(Q©) <
VEP(A, u*) and

1/ wtenea, ooy S NSl wreonca, wy + 1L | Loy 5

for every fe VEP(A, ).
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Proof. Let us consider the connected components {A4,,}Y_, (Me

Nu{w})of 2, U --- UQ,. For each m, choose k points x}, .., x* € 4,,,
and now define the measure

u

O

[

=

(=}

+
Ll
I ] =

Obviously u&—u, is discrete and finite, and (ug& —uy)(R\Q®)=0.
ObViously ,u* is p-admissible since u is p-admissible. We see now that
H (A, 1) =10},

Let us consider g€ #(A,,, u*). For each ye 4,,, there is a 1 < j <k with
ye;. Let I be the connected component of £; which contains the point
y. If w; denotes the absolutely continuous part of x;, we have that

J, 14 Go)17 w)x) dx =,

since g€ A(A,,, u*). Holder’s inequality gives
Hq(j)”Ll(I') < Hq(j)HLP(I', w)) HW;I HLl/(P—U(I') =0,

for every compact interval I' = 1, since w; € B,(£2;). Then [g"| .1,y =0 and
since ¢/~ 1 is locally absolutely continuous in I, it has to be constant in
I, and consequently ¢ =0 in /. We have that ¢|, € P;_, = P,_,. Then we
obtain ¢| A ePk,l, smce A,, 1s a connected set. We conclude q=01in 4,,
since g(x )= C=q(xk)= 0 The same argument gives A (J, u) = {0} for
every closed 1nterval J< A, with x! ., x* eJ.

For each m and n, let us con51der a compact interval J, , with
x5 edyms Inm ;Jn+1 mand U, J, ,=4, nQ2®. We define now
UmeD Ju.m» Where D, :={m:|A,|>1/n and 4,, " (—n,n)#}.
Slnce #D,<2n*+1 and Jif( J.m» 11*)=1{0}, this choice of {M,} gives
(A’ /u*) € (gO'

Assume now that fe V*?(4, u) n L™ (Q'?). We have that

1
m"'

X

|f(xin)| < HfHLOO(.Q(O)) >
for every m and i, since f is continuous at x’,. We have also
[ 1117 duag = [ 1717 dao + [ 1117 d(aes = p0) < 1S Vg + 1 15 ey

HfHLp(/ta‘) < HfHLP(‘uO) + 11 Loy 5

Hf“ Wk p(d, u*) < ”f” Wk (4, 1) + ”fHLw(g(O)) s
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since (ud —uo)(R) = (ud —po)(R@)<1. Then we have V*?(4,u)n
L= s vVer(d,u*). |

An immediate computation gives the following technical result.

Lemma 3.1. Let us consider 1 <p<oo and pu=(tgy, .., ltz) a vectorial
measure with

dity 1 (x) < € x —xo|? dty(x) .

for 0<j<k, xoeR and x in an interval 1. Let ¢ e C*(R) be such that
supp @' S [ Ay, A+ 11U [y, Ay + 1] =1, with Ay +1<l,, max{|i, —x,l,
|21+ 1 =0l 1A= Xol, A+ 1= x|} <cat and @V ooy < cst™ for 0<
Jj<k. Then, there is a positive constant c, which is independent of I, x,, 1,
Ary t, W, @, and g such that

logl w4, u) S Co lell Wk (I, 1)

for every g e C*(R) with supp (¢pg) < 1.

Remarks. (1) The constant ¢, can depend on cq, ¢,, ¢35, p, and k.

(2) 1In the proof we only use the hypothesis g e C*(R) to assure that
[ 1g”17 du; has sense (although it can be infinite). Therefore, if u is
p-admissible, the result is also true for every geV%?(4,u) with
supp(¢pg) = 1.

(3) Condition du;,(x)<cf|x—x0|?du;(x) means that u;, , is
absolutely continuous with respect to x;, and that the Radon-Nikodym
derivative satisfies du; ., /du; < cf |x —xo|?. Proposition 3.2 below shows
that this condition is not as restrictive as it seems, since many weights with
analytic singularities can be modified in order to satisfy it.

We define now the functions
log, x:= —log x, log, x :=log(log, x), ..., log, x :=log(log,,_, x).

With this definition we have the following result, which is a consequence
of Muckenhoupt inequality.

PROPOSITION 3.2. Let us consider 1 <p < oo and w=(wy, ..., ;) a finite
vectorial weight in (a, b). Assume also that there exist 0 <k,<k, xy €R, a
neighbourhood U of x,, neN, ¢;>0, &>0 and oy}, ..,7. eR for
ko <i<k such that

“|x —xo % log?it [x — xo| - - logZn |x — x| for

—c;lx—x| 7%

(1) wix)=e
xeUand ky<i<k,
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(i) (1+0,)/péNife,=0 and ko<i<k,
(iii) wy ¢ B,(U).

Then there exists a weight w* in (a,b) such that the Sobolev norms
Wk r([a,b], w) and W*P?([a, b], w*) are comparable for every function in
W& ([ a,b], w) and satisfying

M);F-Fl(x) <c |X_XO|P W]*(x) >

for ky < j<k and x € U, for some ko< ky <k. Furthermore, if ko # kg then
we have wi, € B,(U).

The following result reveals a big problem when dealing with the
completion of P. Furthermore, it allows to prove Theorem 4.5 about the
multiplication operator.

THEOREM 3.1. Let us consider 1 <p<oo and pu=(ug, .., ttx) a finite
vectorial measure with A a compact set. Assume that there exist x, € R and
0 < ko <k with pu ({xo}) =0 and satisfying the following property if ko <k:
there exist an open neighbourhood U of x, and ¢ >0 such that

dity 1 (x) < ¢ |x = o] diyy ().
for xe U and ko< j<k. Let us define
v :: (07 cee 05 akoaxo’ ak0+15x0’ e a’kéxO)

and N:=#{ko<j<k:o;>0}. Given a Cauchy sequence {q,} =P in
Wk P (A, 1) and Upys - Uy €R there exists a Cauchy sequence {r,} = P in
WEhr(A, ) with lim, o 1g,—rpllwesa =0 and rP(xo)=u; for
ko< j<k. Consequently P*?(A, u+v) is isomorphic to P*? (A4, u) x RV,

Remark. Observe that PX7 (A, +v) is not a space of functions even
when P*?(4,u) is a space of functions. In fact, if g€ P is an element of
P*5P(A, u), then it represents RY elements of P*?(A, u+v), and therefore
there are infinitely many equivalence classes in P%?(A4, u+v) whose
restriction to P%?(4, i) coincides with ¢. Hence, the values ' (x,) for
ko< j<k do not represent anything related with the derivatives of
fePeP(A, u+v).

Proof. It is enough to see that, given sequences {vj},.., {vi} <R,
there exists a sequence {s,} = P converging to 0 in the norm of W*?(4, u)
with 5% (xo) =0’ for ko< j<k, since then we can take r,:=q,—s, with
V=g (x) — ;.
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Let us consider the polynomial 4, € Py_j with hY~*(xo) =07 for
ko< j<k, a function ¢ € C(R) with 0<¢p <1 and

(1, xe[—1,1],
"’(x)‘_{o, it xé[—22],

and the functions

(pt(x) ::(P <x_x0> >

t

for each 0 <7<y, where 7, is any positive number with supp ¢, < U. For
each neN, define the function g,:=h,¢, , where {,} is a sequence con-
verging to 0, with 0 <¢,<t,, which will be chosen later.

Let us define £, =g, if k=0 and

L= g,

Xo+21, (ko—1)!

otherwise. Since we have

fow=[" e B g

xo+2t, (ko_j_l)!
for 0 < j<ky, u is finite and 4 is compact, we obtain that

Hfi,j) HLP(A,yj) <c Hfﬁ,j) ”L“O(A) <cllg, HLI(R) <c|h, ‘|L1([x0—2tn,x0+2tn])a (3.1)
for 0< j<ky. If ky<k, Lemma 3.1 gives that

k k

> Hfggj)HLP(A,yj)z Y | g% HLP(A,ﬂj)
J=ky Jj=k,

SNy |l we—ko.npxy— 20, 5+ 261, g s 1))
<c llh,| Wk =K0. D([xg — 21, X0 + 28, 1 (s s 1)) (3.2)
We can apply Lemma 3.1 since
supp @, = [xo—21,, Xo—1,] U [Xo + 1,, X0 +21,] = [Xo— 21,.. X+ 21,,].
max{|—2t,|, | =1t,|, t,, 2t,} =2t,,
I | Loy =1, 1199 | Loy < ct,? for 0<j<k—ky,

supp g, = supp(hngotn) S [xO - 21n9 Xo + 2tn]



MULTIPLICATION OPERATOR IN SOBOLEV SPACES 173

If ky =k, inequality (3.2) is also true since

£ I 2o, i) = 118 | Loca, sy < W | oy — 21, %0+ 26,1 1)
Inequalities (3.1) and (3.2) and the fact u ({xo})= -+ =u({xo}) =
allow us to choose 7, small enough in order that

1
I/l kaP(A,,u)<;' (3.3)

If A4* is the convex hull of 4 U {x,}, we can choose p, € P such that

1
I\f(’)—pﬁ,”l\mmﬂ;, (34)

for 0 < j<k, since f,, e C*(R). This is deduced from the compactness of 4
and Bernstein’s proof of the Weierstrass Theorem, where the Bernstein
polynomials approximate any function in C*([a, b]) uniformly up to the
k-th derivative (see, e.g., [D, p. 113]).

In particular, we have that

/9 (x0) — p9 (o) <2,
n

for 0 < j<k. If we consider the polynomial ¢, € P, with

87 (x0) = 1 (o) = P (xo)
for 0 < j <k, then there exists a positive constant ¢, which only depends on
A*, with

) c
|‘8£,])HL°O(A*)<;a (3.5)

for 0 < j<k. Therefore, the polynomial s, :=p,, + ¢, satisfies

s;j)(xo) - pglj)( )+£(/> f(/) 0) = (/ ko)( 0) = h;j’k")(xo) ="

j’

for ko< j<k, and (3.3), (3.4), and (3.5) show that there is a positive
constant ¢, which does not depend on n, with

c
IS5 1wk 204, ) <Z

This finishes the proof of Theorem 3.1. |

The proof of Theorem 3.1 gives the following result.
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COROLLARY 3.1. Let us consider 1 <p < oo and u=(ug, ..., 4z) a finite
vectorial measure with A a compact set. Assume that there exist x, € R and
0 < ko <k with pu ({xo}) =0 and satisfying the following property if ko <k:
there exist an open neighbourhood U of x, and ¢ >0 such that

dﬂj+1(x) <c|x—x0l? d;uj(x)a

for xe U and ko< j<k. Given sequences {vy }, .., {vi} =R there exists a
sequence {s,} =P converging to 0 in the norm of W*P?(A,pu) with
s (x0) =07 for ko< j<k.

We have also the following consequences of Theorem 3.1.

COROLLARY 3.2. Let us consider 1 <p < oo and u=(lg, .., Ux) a finite
vectorial measure with A a compact set. Assume that there exist x, €R,
0<ky<k, an open neighbourhood U of x, and ¢ >0 such that

dp; 1 (X) S € [x —Xo|” duy(x),

for xe U and ky< j<k. Then x, is neither right nor left ky-regular.

Proof. Without loss of generality we can assume that u is absolutely
continuous, since the j-regularity just depends on the absolutely con-
tinuous part of the measure. Consequently u is p-admissible. Assume that
X, 1s right or left k,-regular and consider the measure u* as in Proposition
3.1 with the additional condition x! #x, for every m and i Then
(4, u*) e %, and we have by Theorem A

89 (xo)l <c llglwhna s Ve VEI(A, 1),

and consequently
|q(k°)(x0)| <c gl Wk P(4, p*)» VgeP,

since u* finite and 4 compact imply u* € .Z. The measure u* satisfies the
hypotheses in Theorem 3.1 and therefore there exists a sequence of polyno-
mials {r,} with r%(x,)=1 and lim,_, .|, | wts, .+ =0, which con-
tradicts the last inequality.

COROLLARY 3.3. Let us consider 1 <p<oo and u=(uy, ..., ity) a finite
vectorial measure with A a compact set. Assume that there exist x, € R and
0 <ko<k with puy ({xo}) =0 and satisfying the following property if ko <k:
there exists an open neighbourhood U of x, such that u;(U)=0 for
ko< j<k. Let us define

V= (0, oy 0, 04 Oy Oy 4105 woes A0 ,)
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and N:= #{ko<j<k:o;>0}. Given a Cauchy sequence {q,} <P in
Wk 2(A, 1) and Upeys woor Upc eR there exists a Cauchy sequence {rn} <P in
Wke(A, u)  with lim,,_,oO Ign—Tull wera =0 and rP(x for
ko< j< k. Consequently P*?(A, u+v) is isomorphic to P*? (4, ,u) X RN.

The following result (which will be used in the proof of Theorem 3.3) is
an improvement of Theorem 3.1 in [RARP2]. The same arguments used
in the proof of Theorem 3.1 in [ RARP2] give this result.

THEOREM 3.2. Let us consider 1<p<oo, u=(ug, .., ;) a vectorial
measure and a closed set 1 = A with u|,; p-admissible and (I, i) € €,. Assume
that K< 1 is a finite union of compact intervals J,, ..., J,, and that for every

J,, there is an integer 0<k, <k satisfying J, < Q% =V if k, >0, and
u;(J,)=0 for k,<j<k, if k,, <k. If u;(K)<oo for 0<]<k then there
exists a positive constant co such that

co |l f2ll W oA, ) S £ Wk p(I, ) (sup |g(x)| + 1 gll kaP(I,y)):

xel

for every f,geV*P(I,u) and defined on A with supp(fg)<I and
g=g"=---=¢g®=0inI\K

Remark. The sets 2 are constructed with respect to (7, u).
Theorem 3.2 gives the following result corresponding to the case n=1

and k,=k.

COROLLARY 3.4. Let us consider 1 <p< oo, = (ug, .., ) a vectorial
measure and a closed set I = A with |, p-admissible and (I, 1) € 6,. Assume
that K is a compact interval contained in In Q% =V, If u;(K) < oo for
0< j<k, then there exists a positive constant c, such that

Co 178l werca, wy < | f ko ) (SUp 18X + 11 gl o, ) )s

xel

for every f,geV*P(I 1) and defined on A with supp(fg)<I and g' =
g = =g®=0inI\K

We need some technical result.

LemmA 3.2. Let us consider 1 <p < oo, ¢;,c,>0 and w a (one-dimen-
sional ) weight.

(1) If w satisfies

Wl L1ca, g7y < €1 and < HW_1”L1/(1’—1>([a,ﬁ])a
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then there exists a weight v =w such that
ol 21ra, g7) < €1 and < HU_IHLI/(P*1>([¢,/3])<OO .
(2) IfweL'([a, b]) and satisfies
H\/V_l|‘L1/(p—1)([a’a+£]) = 0, for every ¢>0,

then there exists a weight v=w such that ve L'([a, b]),
o= Lo~ 1gas e, 67) < 9 5 for every &>0, and ||v™|| 1to-1ya, p7) = O

Proof.  We first prove (1). For each >0, let us consider the function

w, :=max(¢, w), which obviously satisfies w,>w. Recall that if x4 is a
o-finite measure in X, every measurable function g >0 satisfies

f gdu:j u({xeX: g(x)=1})dar
X 0
Therefore we have that

dA

a(t) :=|w, | L1 g7 = Loo [{xe[a B]: max(z, w(x)) =1}
:jw [{xelo B1:w(x)=>A}| di+(B—a)t,

B
bp(t)l/‘l’—”:=f 1=

o

= [7 e [a 1 min(e= 0=, w(x) M0 =) > 4} | di
0

= U(p—1)

:fo [{xel[o B]:w(x)"2=D> )} di
<t VP=Y(p—a) < 0.
Since a(t) and b, () are continuous functions for >0 and
lim a(?)= ”WHLl([a,ﬂ]) > ,l_i,%l+ bp(t) = HW_IHLl/(I’*”([a,ﬁ]) >

t—>0t

we can take v :=w, for small enough > 0.
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In order to prove (2), let us choose x,:=5b and x, ., €(a, min{a+27",
X,} ] such that

W= =g, oy > 1
By part (1) we can take a weight v,>w in [x,, , x,] with
L< o, M zvo-vx, , x) <
and

v, HLI([xn_H,x”]) < HWHLI([an,xn]) + X, = Xn4 -
If we define v in (a, b] by v:=v, in (x,,, x,], we have v=w,

—1 —1
o™l Lvo-1ra, b7y = 0, o™ Lve-n(rx,, 57) < 0,

vl 23 ta 61 < Wl 2i(ra, 67y + B — @,

and this finishes the proof. |

Theorem A gives that if u is p-admissible, (4, u)€ %, and x, is (k—1)-
regular, then we have

(31 |f(k71)(x0)| <|fI Wk p(4, 1) s

for every f e W*?(4, u). The following result, which will be used to prove
Theorem 4.4, says that this inequality is always false if x, is not (k—1)-
regular.

THEOREM 3.3. Let us consider 1 <p < oo and u=(uy, ..., itx) a vectorial
measure such that there exist ny>0, xo€R and 0<ky<k with
i ([xo—10, Xo+10]) <00 for 0<j<ko and p;([xo—1¢, Xo+10]) =0 for
ko<j<k (if ko<k). Let us assume that x, is neither right nor left
(ko— 1)-regular and that p,_({xo})=0. Then, for any 0 <5 <1,, there is
no positive constant ¢, with

ey LD o)l SIS I wkooga, wy »
Jor every fe CZ([xo—11, xo+1]).
If we have also that u is finite and A is a compact set, then there is no
positive constant ¢, with

¢y lg% oD (xo) < llgll Wko(d, 1) »

for every g€ P.
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Remark. 1If E is a closed set, we denote by C°(E) the set of functions
feCZX(R) with supp f< E.

Proof. 1In order to prove the first part of the theorem, without loss of
generality we can assume that k, =k, since otherwise we can change 4 to
AN [Xo—1o, Xo+1o]. Let us denote by w the absolutely continuous part
of u. Observe that the fact that x, is neither right nor left (k —1)-regular
is equivalent to

wi & B, ([ X0, Xo+71]1) W B, ([X0—17, Xo]), for every #5>0.

We can assume that w;(x)>1 for 0<j<k if xe[xo—#o, Xo+7,] and
wi(x) € B,([xo—1n, xo+n]1\{xo}), since otherwise we can change w,(x) to
max (w;(x), 1) and wy(x) according to Lemma 3.2 in [xo—1#g, X+ 7o)
This increases the right hand side of the first inequality and does not
change the fact that wy ¢ B,([xo, Xo+7]) U B,([xo—1,Xx,]) for every
n>0.

Observe that it is enough to prove the first part of Theorem 3.3 for
almost every 5 €(0,#,] (with respect to Lebesgue measure). Let us fix
0<n<no with pe({xo—1})=p({xo+7})=0 (the set of #’s in (0,7,]
which do not satisfy this is at most denumerable since ([ xy—7o,
Xo+170]) < 0).

Since wy € B, ((xg, xo+11)\B,([ X0, xo+7]), the function

Xo+n
U(t):zj wk_l/(p_”
Xo+1

is positive and continuous on (0, 7) and lim,_, 5+ U(z) = oo; since for any
sequence { y,} with y, 0 as n— oo

. X0~ Vn
lim J w YP=D = oo,
n— o0 Jxj—py

for n large enough there exists a point x,, € (0, #) such that
JXWL” Wk—l/(p—l)zjxo_yn Wk—l/(p—l). (3.6)
x0+xn xo—n

We have also x,\0 as n— oo. Therefore, we can choose decreasing
sequences {y,} and {x,} satisfying (3.6) and g, ({xo— y,})=pc({x0+

x,})=0 for every n.
Let us define S :=supp(u,), and

N | —1
hn =Wy /t )(X[xo—n, xo—yn]\S_X[x0+xn,x0+77]\S)'

Observe that A, € L' (R), since wy € B,([Xo— 10, Xo+170]1\{Xo} ).
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If we define

x (x —p)k—1
X)) = hn t 7dts
2,(x) jw =T
then g*—1 =§§0+” h,eAC,.(R). We have also
x - (x_t)k72
L(x) = k=D (1) o g,
&n(x) LW, & )
. o (x—pkI
(@) x)= (k—1) t %dl‘,
@)= ety

for 0 < j <k —2. Therefore there exists a positive constant ¢ such that

H (j)H Jx0+n wa (kfl)(l) (X—Z)k—j—Z P Pd ( ) 1/p
_ A = . i x
En Loty —n. xo+n1. 1) - xO+”gn (k—j—2)! #
k—1
<c Hgi )”Ll([xo—n,x0+n])’ (37)

for 0< j<k—2, since u;([xo—n, xo+n]) <o for 0< i<k

Since i ({xo—1}) =i ({ X0 +1}) =1 ({1 X0 — Vu) ) = tix({Xo +x,}) =0
and u,([xo—n, xo+7n]) <oo, given any ¢>0 we can choose a function
1,eC.((xg—#, Xg— ¥,) Y (Xg+ X,, Xog+ 7)) such that

”In_hn”LP([xo—n,x0+r]],,uk)<8 and ”In_hnHLl([xo—ry,xo+n])<89

by Lemma 3.1 in [R] (recall that h,e L?([xq—1#, Xo+ 7], ty) O
L'([xo—1,Xo+7]) and h,=0 on (xy— y,, Xo+ X,)). (This Lemma is just
a version of the classical approximation result.) Since u, ([ xo—7, Xo+#])
<o and I, € C.((xg—1, Xog— Vu) U (Xo+ X, Xo+7)), by a convolution of
I, with an approximation of identity, we can find a function H, €
CE((xo—H, Xg— ¥n) U (xo+X,, Xo+1)) such that

HIn_FInHLP([xO—n,xO+17],,uk)<6 and Hln_HnHLl([xo—n,xO+17])<8'
Then we have

HHn_hnHLP([xofn,onrn],,uk)gze and HHn_hn|‘L1([x07;7,x0+;1])<28'
(3.8)

We now define

. k-1
Guwyi=[" H, 0 S

dt.
xpt1 (k—=1)!
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Let us fix a function @ e C*(R) satisfying 0<¢ <1 in R, ¢=1 in
[xo—#/2, 0) and ¢ =0 in (—oo, x,—#], and define F, :=G, .
Assume that there is a positive constant ¢; with

ey [fE D (xo)l < Il Whk(4, 1) >

for every fe CX([xo—#n, Xxo+#n]). By Remark 1 after Definition 11 we
have ([xo—n, xo+n], 1) €%y, since wy €B,([xo—1, xo+n]\{x,}) and
wi(x)=1 for 0<j<k, if xe[xo—#n,xo+n], and this implies that
QO\(Q, U --- UQ,) has at most three points ({x,—17, X, Xo+7}) and
H([xo—n, xo+ 1], u) ={0}. By Corollary 3.4, with K :=[xo—1#, xo—17/2],
we have

e |[GE P (xo)l = [FF (x| < |IF,| Wk (4, 1)

<
<c |G, |l Wk P([xg—n, xg+n1, 1) >

and consequently
|GF=D(x0) < |G, Wk P([xg—11, g+ 11 1) » (3.9)

for every n. In order to apply Corollary 3.4 u must be p-admissible;
otherwise, applying Corollary 3.4, we can obtain (3.9) for x4 instead of u
(see Definition 15 in Section 4), and we have u% <.

By (3.8), we have that there exists a positive constant ¢, independent of
n and ¢, such that

185" = G Loty - 5+ 11y

Xo+n xXo+7n |X—t|k_j_1 P 1p
<<LO” <L () — H,(1)] (k_j_l)!dt> dﬂj(x)>

<c th_Hn HLI([xO—n,xo+n]) <2C8,

for 0< j<k, since u;([xo—#,xo+7n])<oo for 0<j<k. This inequality
and (3.8) show that there exists a positive constant ¢ such that

Hgn_GnH Wk!P([xofq,x0+n],/t)<C8a (310)

if we choose 4, as g® (observe that if we change g% in a set B of zero
Lebesgue measure, this would change [ 5 || o, -y, x+ 17, ) i s (B)>0).
We have also by (3.8)

Xo+7n
|80 (x0) = GE Vo) [ <[ 1) = Hy(0)] i

X0

<”hn_I—InHL1 <28

([xg—n, xg+7n1)
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Therefore, by (3.9) and (3.10), we obtain for some positive constant ¢

|2 D (xo)| =26 < |G~V (xp)| < |G, | W P(Lxg— 11, %o+ 11, 12)
<C(HgnH Wk’P([xof;y,onr”],‘u)‘i‘CE),

for every n and &> 0. Consequently

g% =D (xp) <c gl Wk P([xg—n, X +71, 1) >

for every n. Therefore by (3.7) we have that there exists a positive constant
¢ such that

k—1 k—
c |g£1 1)( 0)| < Hg( )HLI([xo—r] x0+n])+ ”gil I)HLP([xo—r],xo+n],,uk,1)
+ Hg HLP([xofn xo+ 11 1) 2

for every n. Since w,_;>1 in [x,—1#, xo+#], there exists a positive con-
stant ¢ such that

clgdVixo) < gl " HLP([xO—n,xo-Fn],,uk_l) + thHLP([xO—;y, xo+ 1T, 12)
k—1
- Hgn )HLP([xofn, Xo+n1 sy _1) + ”hn HLP([xofn, Xo+n1, wy) 2

for every n, since g =h,=0 in S=supp ().

For each ¢>0 there exists 0 >0 with u;,_;([xo— 9, xo+J]) <g, since
ti—1({xo})=0 and g, _;([xo—7n, xo+7]) is finite. Recall that g*~ e
AC([xg—n, xo+n]). Therefore, we have that

gD (xo) <e? Hgizkil)HLOO([xOfJ,xOJr&])
+ gk HLP([XO—n,xO—J]u[x0+5,x0+ﬂ],ﬂk_1)
+ 1Al Loy — . xg-+n7. )
=7 | g% =D (xo)| + Ilgk " | Lo(Cxy =17, 39— 57 0 Do+ 6 g+ 170 1)

+(21g, 7V (xo)D)'”, (3.11)

since g(k_l)(x) s§0+qhn7 Hgg,k_l)‘|L°°([x0—5,x0+5]):|g£,k_1)(xo)|a and
(3.6) shows

» T -t [T -
(A, Lo([xg— 1, X +11 w) = j Wi + f Wk

=21g% P (xo)l.
Since g\~ "(x)=[% ,, h, and g~V (x,) = jﬁgj;’c we /=1 we have that

lim,, _, o, g5~ (xo)[ = [0+ wir 7D = oo, since wy ¢Bp([xo, Xo+1]).
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Claim. We have that g%~ HU([XO,”: x0=810 L+ 8%+ ) is bounded.

If we have the claim, then as n — oo in (3.11), we obtain ¢ <&'? (recall
that lim,_, ., |g¥~"(x,)| = 0), and since ¢>0 is arbitrary we conclude
that ¢ =0, which is a contradiction. This finishes the proof of the first part

of Theorem 3.3, except for the claim.
We now prove the claim. We have for xe [x,+J, xq+#]

k—1 Yot 1 1
0<gt- >(x)<j Wi V=D,
xg+0

The fact (3.6) gives g%~V (xy—#)=0, and therefore g~V (x) =§§0_” h,.
Then we have for xe[x,—1#, xg— 0]

0< k-1 xXg—3

Xo—1n

This finishes the proof of the claim.

If we have also that u is finite and 4 is a compact set, then we obtain
the result for polynomials, since we can approximate the kth derivative of
each function in C*(R) uniformly in 4 by polynomials. ||

Theorems 3.3 and A give the following result.

COROLLARY 3.5. Let us consider 1 <p < oo and u=(uq, ..., ity) a p-ad-
missible vectorial measure with (A, i) € 6, and such that there exist ny,>0,
Xo €R and 0<ko<k with p,([xo—no,Xo+10]) <00 for 0<j<k, and
1 ([Xo =10, Xo+10]1) =0 for ko< j<k (if kg <k). Then, there is a positive
constant ¢, with

1 |fSm D (x)l < N f I wioa, o »

Jor every feCZX([xo—ng>Xo+MNol) if and only if x, is right or left
(ko—1)-regular.

4. PROOF OF THE RESULTS FOR M

First of all, some remarks about the definition of the multiplication
operator.

DerFINITION 12.  We say that the multiplication operator is well defined
in PX7 (A, p) if given any sequence {s,} of polynomials converging to 0 in
W 2(4, 1), then {xs,} also converges to 0 in W*7(4, ). In this case, if
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{q.} e P*?(4,u), we define M({q,}):={xq,}. If we choose another
Cauchy sequence {r,} representing the same element in P*?(4, u) (ie.
{g,—r,} converges to 0 in W*?(4,p)), then {xq,} and {xr,} represent
the same element in P*7(4,u) (since {x(q,—r,)} converges to 0 in
W2 (4, ).

This definition is as natural as the following.

DeFINITION 13. If p is a p-admissible vectorial measure (and hence
Wk P(A, ) is a space of classes of functions), we say that the multiplication
operator is well defined in W*?(A, i) if given any function he V*?(4, 1)
with ||hl| w0 =0, we have ||xh|| ko4, ,)=0. In this case, if [ f] is an
equivalence class in W52 (4, u), we define M([ f]):=[xf]. If we choose
another representative g of [f] (ie, |f—glwkoun=0) we have
[xf1=1[xg], since |x(f—&)llwkn,.=0.

The following result characterizes the spaces W% ?(4, u) with M well
defined in the sense of Definition 13 [ RARP2, Theorem 5.27.

THEOREM C. Let us consider 1<p<oo and a p-admissible vectorial
measure ji. Assume that xf e V&?(A, u) for every fe V*?(A, u). Then M is
well defined in W*?(A, w) if and only if #°(4, )= {0}.

Although both definitions are natural, it is possible for a p-admissible
measure u with W% ?(4, u) =P (the closure of P is considered with the
norm in W& ?(A4, u)) that M is well defined in W*?(4, 1) and not well
defined in P%?(4, ) (see Corollary 4.4). The following lemma charac-
terizes the spaces P*?(A, u) with M well defined.

Remark. From now on we use Definition 12 instead of Definition 13.

LeEMMA 4.1. Let us consider 1 <p<oo and pu=(ug, .., ity) a vectorial
measure in M. The following facts are equivalent:
(1)  The multiplication operator is well defined in P*? (4, p).
(2) The multiplication operator is bounded in P*?(A, u).

(3) There exists a positive constant ¢ such that

[[xq] Wk, u) S C lqll Whpd, 1) > for every qelP.

Remark. When we say that the multiplication operator is bounded in
P%P(A, 1), we are assuming implicitly that it is well defined in P*? (A4, u),
since otherwise the boundedness has no sense.

Proof. 1t is clear that condition (3) implies (1). If we assume (1), we have
that the multiplication operator M is continuous in 0€ (P, |||y o4, )
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Since M is a linear operator in the normed space (P, |||l o4, ,))> WE
know that M is bounded in (P, |- || y«r4, ,)), Which gives (3).

We now show the equivalence between (2) and (3). Let us consider an
element ye P%?(4, u). This element y is an equivalence class of Cauchy
sequences of polynomials under the norm in W% ?(4, u). Assume that a
Cauchy sequence of polynomials {¢,} represents y. The norm of y is
defined as [yl pkrcy, oy =1im,,_, o, [1q, || w o4, .)» Which obviously does not
depend on the representative chosen. Hence, condition (2) is equivalent to

linio [ xq., |l whpa, u) S C linio g, Wk (4, 1) >
for every Cauchy sequence of polynomials {g¢,}. Now the equivalence
between (2) and (3) is clear. |

We now deduce the following particular case.

COROLLARY 4.1. Let us consider 1 <p < oo and p=(tg, .., llz) a p-ad-
missible vectorial measure in M with W% (A, )= P. If the multiplication
operator is well defined in P*?(A, ), then it is well defined and bounded in
Wke (4, ).

LemmA 4.2. Let us consider 1 <p < oo and u= (g, ..., ity) a finite vec-
torial measure with A a compact set. Then, the multiplication operator is
bounded in P*? (A, 1) if and only if there exists a positive constant ¢ such
that

lg¥~ I)HLP(A,ﬂj) <cllgllwera, s
for every 1 < j<k and q € P.
Proof. 1If M is bounded in P*?(4, i), we have that
XD Lo,y < 1M 1l ko, oy
for every 1 < j<k and g€ P. Since

H(xq)(j)HLP(A,yj) = |xqg” + jqV~ I)HLP(A, )

= Hq(j_l)HLP(A,yj) —K ”q(j)”u(a,yj) >
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with K :=max{|x|: xe 4}, we have
Hq(j_l)Hu(A, ) <K Hq(j)HLP(A,/Aj) H M gl era, )
S(K+ M) Nl Wk P4, ) s
for every 1 <j<k and ge P.
We now prove the converse implication. We have
H(xq)(j)HLP(A,ﬂj) = | xq"” +J.q(j71)“LP(A,yj)
<J Hq(jil)HLP(A,,uj) +K Hq(j)”LI’(A,y].) >
with K :=max{|x|: xe 4}, for every 1 < j<k and ge P. Then
I(xq) 1% <2777 lgVRIg + K7 ¢4 )
q Lo, ) S J g L4, ) 4 Lrca,
<227k gl Gk, oy + K2 14 £, )
for every 0 < j<k and g € P (if j =0 the inequality is trivial). Consequently
[ xqll €Vk,p(4,”) <277 (kPte? lqll I;Vk,p(A,”) +K” |4| €Vk,p(A,,l) )s
and
1 xq 1wt pa, oy < 2= Vip (jp+ler 4 KP)UP | g Wkp(4, 1) >

for every g € P. Hence, Lemma 4.1 gives that M is bounded in P*?(4, ).
|

In the following we often use the next result. We omit the proof since it
is elementary.

LemMMa 4.3.  Let us consider 1 <p < oo and pt= ttg, - tz), 1 = (10> s L))
vectorial measures in M, with A= U’;:O supp ;= U];:o supp u;. If the
Sobolev norms in W% ?(A, i) and W*?(A, 1') are comparable on P, then:

(1) PeP(4,u)=PCr(4, ).

(2) M is bounded in P*?(A,pu) if and only if it is bounded in
PEP(4, ).

DEerFINITION 14.  We say that a vectorial measure = (ig, ..., ity) belongs
to the class ESD if du;= f;du; ., with f; bounded for 1< j<k.

Remark. A vectorial measure u is sequentially dominated if and only if
we ESD and #supp uy= oo. If u e ESD, observe that 0 is the unique poly-
nomial g with | ¢l y k4, ) =0 if and only if # supp po = .
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THEOREM 4.1. Let us consider 1 <p < oo and = (ug, ..., ity) @ finite vec-
torial measure with A a compact set. Then, the multiplication operator is
bounded in P*? (A, u) if and only if there exists a vectorial measure y' € ESD
such that the Sobolev norms in W*?(A, i) and W ? (A, u') are comparable
on P. Furthermore, we can choose ' = (fiq, ..., ty) With p; :=p;+u;  +

Proof. Assume that there exists a vectorial measure ' € ESD such that

the Sobolev norms in W% ?(A4, u) and W*?(A, i') are comparable on P.
By lemmas 4.2 and 4.3 it is enough to show

g~ I)HLP(A,,u}) <c llqllwrrca, (4.1)

for every 1 < j<k and g e P. The hypothesis u' € ESD gives

[ g =017 dy = [ 1g9 =17 fy s <o [ gV 017 ity

where || f;|| . = sup,c 4 |f;(x)|, and then we have (4.1).
Assume now that M is bounded in P*?(4,u). Let us consider the
vectorial measures u°, u!, ..., u* =1, u* defined by

wlii=u;, if 0<i<},

) k

=Y p, if j<i<k
I=i

Observe that u* =y and u° is the measure u’ defined at the end of the state-
ment of Theorem 4.1. These vectorial measures satisfy, for 0 <i<k and
0<j<k,

wi=ti=ud, if i#j—1, (4.2)
WiZY = sy =y (43)

Therefore we have |lgl wr o, i) < |9l whrea, -1y, for every geP and
1< j<k

Since u’e ESD it is enough to show that the Sobolev norms in
W ?(A, u*) and W*?(A, u°) are comparable on P. We prove this by
showing for 1< j<k that the Sobolev norms in W¥*?(4,u’) and
Wk P(A, u/~1) are comparable on P and M is bounded in P*?(A, u/~1).
We prove this last statement by reverse induction on j.

If j =k, we have that M is bounded in P*?(4, u*), since u* = u. Lemma
4.2 gives that

Hq(k_l)Hu(A,ﬂ;) = Hq(k_l)HLP(A,yk) <cllglwrrca, =< 1l weoca, b »
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for every g € P. This inequality and (4.3) give

lq et )HLP(A He— 1)\Cp H‘IHII:Vk,p(A,ﬂk)—i_ Hq(k )HL‘”(A wh_D
<P+ 1) 1915k, ukys

for every ge P. This fact and (4.2) show that the Sobolev norms in
Wk P(A, u*) and WP (A, u*~') are comparable on P. Therefore Lemma
4.3 shows that M is bounded in P*?(4,*~1), since it is bounded in
PEP (A, 1)

Assume now that the induction hypothesis holds for j+ 1. Then we have
that M is bounded in P*?(4, /). Lemma 4.2 shows that

Hq(ji I)HLP(A,;,;,) <clql Wk p(4, piy s
for every g € P. This inequality and (4.3) show

lq V- 1)HLP(A wy 1)\Cp gl 5 ra,wy T HC](] HLP(A 1

<P+ 1) 11q115 k04, iy

for every ge P. This fact and (4.2) show that the Sobolev norms in
WkP(A, u/) and W*?(A, u/~1') are comparable on P. Then Lemma 4.3
shows that M is bounded in P%7(A4,u’~"'), since it is bounded in
PRP (4, 1),

This finishes the induction argument and the proof of Theorem 4.1. ||

Obviously the best way to deduce that ¢ and x' are comparable is to
prove that 4’ can be obtained by a finite number of completions of ux. In
order to check this the following result is useful.

PropPoOSITION 4.1. Let us consider 1 <p < oo, a vectorial measure p and
a fixed 0 < j<k. Assume that u;((a,b])< oo, w;:=du;/dxe B,((a, b]), w
is comparable to a monotone function in (a, a+e¢] and (1)), ((a,a+¢]) =
Jor some ¢>0. Then A,(u;, p;) < oo, where we are considering the interval
(a, b] in the definition of A,,.

Remark. The result is not true without the monotonicity hypothesis,
even when x4 would be absolutely continuous, as is shown in the following
example.

ExaMPLE. For each 1<p< oo there exists a weight we L*([a, b]) n
B,((a,b]) with A,(w, w) = o0:
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Without loss of generality we can assume that [a, 6] =[0,1]. We give
the example for 1 <p < oo. The case p =1 is similar. Choose a sequence of
positive numbers {/,} growing to infinity with

n p—1
lim 272" ( Y hj2_2j> = o0,

n— oo j= 1
and define

1, it xe(2-2-1 27,
W(X).Z hl—p, if xe(2_2”,2_2”+1].

It is immediate that

2—2n 1 n

J w=2"%"1  and J w M= 3 27,
0 2= i
j=1

and hence we have A4,(w, w) =00 and we L* ([0, 1]) n B,((0, 1]).

Proof. We prove the case 1 <p < oo. The proof is similar in the case
p=1. If w;eB,([a,b]) the result is immediate. Assume now that
w; ¢ B,([a,b]). Without loss of generality we can assume that w; is a
monotone function in (a, a +¢&]. We can assume also that w;(a+¢) < oo,
since otherwise we can take a smaller ¢. Then w; is a non-decreasing func-
tion in (a,a+e] and lim, _ ,+w;(x)=0, since otherwise w; e B,([a, b]).

Fora<r<a+e, if I:={5, , w;V?~Y we have that

wi((a,r]) <Jb Wj_l/(P—l)>p_1

r

r a+e p—1
=<J wj><J wj_l/“’_l)+1>

<(r=a)w(r)((a+e—r) w(n =D+ et

<e(e+wi(a+e)/r=Dr-t,

Fora+e<r<b,

b r—1
ﬂj«a,r])(j w,-”“'”) <uyla, b1 1771

r
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These two inequalities give A, (u;, u;) < oo. |

The following result is very useful since in many cases it allows to reduce
the study of the boundedness of M in an abstract space P*?(4, m) to the
study of the same property in P*?(4, ) with a p-admissible measure u.
This has two advantages: the new space is a space of functions and there
are results of boundedness for M with u p-admissible (see Theorem 4.3
below and [ RARP2, Sect. 57).

THEOREM 4.2. For 1<p< oo, let us consider a finite p-admissible vec-
torial measure p and a finite vectorial measure v in the compact set
4= U';=0 supp u;. Assume that (A4, u) € %, and that supp v; is contained in
a finite union of compact intervals K;_, cQU=Y, for each 1 < j<k. (The
sets QU™ are constructed with respect to p.) If the multiplication operator
is bounded in P*?(A, u), then it is bounded in P*? (A, u+v).

Proof. We have that there is a positive constant ¢ such that

[xqll e P ) SC lql Wk (4, ) >

for every g € P. Then, it is enough to show that for some positive constant
¢ we have

1xq 1l wepca, vy < € NGl wira, psv >

for every g e P. Since (xq)"¥ = xq" + jq“~1 and

qu(j)”LP(A, v) <K Hq(j)HLP(A, v) <K ¢l Wk P(A, i+ v) >

with K :=max{|x|: xe 4}, it is enough to show that for some positive
constant ¢ we have

Hq(jil)HLP(A, vy SC g1 weca, sy >
for every 1< j<k and g€ P. The hypothesis on supp v;, the finiteness of v
and Theorem A give
i—1 i—1 i—1
Hqu )HLP(A, v) = Hq(j )HLP(KFI, v) <c Hq(j )”L“O(KJ;I)
<cllql whp(d, u) S C 4l WP, yu+v) >

for every 1 < j<k and ¢ e P. This finishes the proof of Theorem 4.2. ||

DErFINITION 15.  Let us consider a vectorial measure u with absolutely
continuous part w. We define the p-admissible part u* of u by d,u;?d:=
d(p1))s | oo +w; dx for 0< j<k and A4/ :=)%_, supp u%’.

j=0

We have the following consequence of Theorem 4.2.
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COROLLARY 4.2. For 1 <p < o0, let us consider a finite vectorial measure
u with A=4% a compact set. Assume that (A,u*)e%, and that
supp (u; — ,u;?d) is contained in a finite union of compact intervals
K, , =QY™Y, for each 1 < j<k. If the multiplication operator is bounded
in P%P(A, u®), then it is bounded in P*?(A, u).

Remark. 1If A4+# 4°% we can use localization results, such as Theorems
4.9 and 4.10.

THEOREM 4.3. Let us consider 1 <p < oo and a finite vectorial measure
u with A a compact set. Assume that (4%, u*)e %, and that for each
1< j<k we have u,(A\(J,_, v K;_;)) =0, where K;_, is a finite union of
compact intervals contained in QU~", and J,_, is a measurable set with
du;= f;du; y in J;_| and f; bounded. Then the multiplication operator is
bounded in P*?(4, u).

Proof. By Lemma 4.2 it is enough to show that there exists a positive
constant ¢ such that

Hq(j_l)”LP(A“uj) <c|ql Wk (4, 1) »
for every 1 < j<k and ge P. We have by u;(4) < oo and Theorem A
lqU=D|P du; < \Iq“‘”l\’iwug,n < g1 5k pga yady < € (1G] 5k 004, 1y

K 4

The hypothesis on J;_; gives

[ la D dy= 191 fd

Ji—1 Ji—1

<e | gV diy < elgln

j—1

These two inequalities and

[lav=D1rdg <] 191 digt | 1gU 017 dy
Ky Ji—1

give the desired result for every 1< j<k and g€ P. This finishes the proof
of Theorem 4.3. |1

THEOREM 4.4. Let us consider 1 <p<oo and pu=(ug, .., ttx) a finite
vectorial measure such that A is a compact set and there exist 1,>0, x, €R
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and 0 <ko<k with u;([xo—1n9, Xo+10]) =0 for ko< j<k. Let us assume
that xo is neither right nor left (ko—1)-regular. If p ({xo})>0 and
uko_l({xo})zo, then the multiplication operator is not bounded in
PEP(4, ).

Proof. Assume that the multiplication operator is bounded in
P5P(A, u). Lemma 4.2 gives that there exists a positive constant ¢ such
that

llg%o—

I)HLP(A,,ukO) <c llgllwx P4, p) >

for every g € P. Consequently, since ﬂko({xo} ) >0, we have that

|q(k°71)(x0)| <c |qll Wk (4, 1)

for every g € P, but this is a contradiction with Theorem 3.3. ||

THEOREM 4.5. Let us consider 1 <p<oo and u=(ugy, .., Ux) a finite
vectorial measure with A a compact set. Assume that there exist x, €R,
¢>0, 0<ky<k and an open neighbourhood U of x, such that

ity (x) < € |x = o] dpty(x)

SJor xe U\{xo} and ko< j<k. If there exists i>ky with pu;({xe})>0
and p;_({xo})=0, then the multiplication operator is not bounded in
PEr (4, p).

Proof. Let us consider the vectorial finite measure v=(v, ..., V)
defined as follows: v;:=0 for 0< j<kg and v;:=u; |, for ko< j<k. The
measure u' 1= u — v satisfies 1y ({x0}) =0 and

it} 1 (x) < ¢ | — x| diy(x),

for xe U and k,< j<k. Then Theorem 3.1 shows that there exists a
sequence of polynomials {r,} such that

(1) lim |r,| Wk, 1) = 0,
n— oo

(2) 7P (x) =1,

(3) r"(x4)=0, if m#i—1, kg<m<k.
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We have lim, , , |7, | wkoa, =0, by s, 1({xo})=0 and conditions (1)
and (3); conditions (2) and (3) give that

llm lnf ern H Wk'p(A,/t)

n— oo

> ({xo]) 7 Tim (g 7 () + i =D (xo)| =it ({x0} )7 > 0.

These two facts show that the multiplication operator is not bounded in
PEr(d,p). 1

As a particular case we obtain

COROLLARY 4.3. Let us consider 1 <p < oo and u=(ug, ..., 4z) a finite
vectorial measure with A a compact set. Assume that there exist x, €R, an
open neighbourhood U of x, and 0<ko<k with p;(U\{x,})=0 for
ko< j<k. If there exists i>kq with u;({xo})>0 and p;_,({x,})=0, then
the multiplication operator is not bounded in P*?(4, u).

The following is a modification of the Muckenhoupt inequality, which
can be proved by similar arguments.

LemmA 4.4. Let us consider 1 <p<oo and pg,p, finite measures in
[a, b] with wy :=du, /dx. Assume that there exists a positive constant c, with

jb (1) d

X

<co gl zo(ra, b1, ) >

LP([a, b], )

for any function g in C*((a, b)). Then we have

sup o(La 1) Wit llve-nr 5y < €5
a<r<b

THEOREM 4.6. Let us consider 1<p<oo and pu=(ugy, .., 1tx) a finite
vectorial measure with A a compact set. Assume that there exist 0 <k, <k,
aeR and ¢, ¢ >0 with

dits \ —1
M s ) |2

:@’
a<r<a+e LYP=D([r, x +£])
a+e .
2 [ et (x—nf I tar
x L2(4, 1)
<cHg”LP([m,oz+a],yko)9 VgGCLO’O(((xﬂO(_I_’g)) and 0<]<k0)

(3) #supp(:ujl(u,oc+s))<ooa fOV k0<]<k (lfk0<k)

Then the multiplication operator is not bounded in P*? (A, ).
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Remark. A similar result holds for [a —e, ] instead of [, a +¢€].

Proof. By Lemma 4.4 and hypothesis (1) we know that there exist
functions g, € C((«, a +¢)) such that

. H“';+s gn(t) dtHLP([oc,oc+s],,uk0)
lim =

n— HgnHLP([D(,OC+5],/‘k0)

If we define v = (v, ..., v) by v; :=pu; for 0< j<koand v;:=pt; | s\, a + e fOT
ko< j<k (if ky<k), and

Gul(x) :=fx &a(1) Lo ! dt,

ate (ko—1)!

hypothesis (2) gives

ko
HGn H Wwkr(4, v) < Z HGEj) HLP(A,u,-) <G Hgn HLP([u,aJrSJ,ﬂkO) .
j=0

Then we have

Fon —
lim inf HG; Y HLP(A,ﬂko) > i Mi-he ga(1) dt”LP([“»“"'e]’”ko) _

> =
n— oo G, wkp(4, v) n— oo ol gn HLP([zx, atel, )

Since 4 is compact, Bernstein’s proof of the Weierstrass Theorem shows
that we can approximate G, by polynomials with the norm

k
IS4 := Z ”f(])HLw(A) >
Jj=0
and hence with the norm

1f1lz:= 1] w4, v) T |‘f(k°71)‘|LP(A,yk0) >

since i and v are finite. Consequently there exists a sequence of polyno-
mials {¢,} with

g%V oy

Im ——— =

nsw g, Wk p(4, v)

If ko <k, by hypothesis (3) we can consider

k
{xh () xm} = U supp (/’lj |(<x,ac+s)) .

J=ky+1



194 JOSE M. RODRIGUEZ

If we apply Corollary 3.3 m times we obtain that there exists a sequence of
polynomials {r,} with

e
lim

n>w |1, wk (4, v)

1
) | LP(4, 1)
= 2

and r(x;) =0 for ko< j<k and 1 <i<m. Therefore

o=
im

D LP(4, 1)
noowo |1, wk (4, 1)

Now Lemma 4.2 finishes the proof. |

COROLLARY 4.4. Given a,beR, a<b and 1<p< oo, there exists a
p-admissible vectorial measure u such that P is dense in W&?([a, b], ),
M is well defined in W%?([a,b], ) and it is not well defined in
PE?([a,b], ).

Proof. Fix ce(a,b) and define the absolutely continuous vectorial
measure u as follows: w;:=1in (¢, b] for 0<j<k, w;:=0 in [a, c] for
0<j<k, and w, is a weight in [a, c] as in the example after Proposition
4.1. u is a p-admissible measure since it is absolutely continuous. It is easy
to check that #'([a,b], u)={0} and then Theorem C shows that M is
well defined in W*?([a, b], u). Theorem 4.6 with ko =k and [a, x +¢] =
[a, ¢] shows that M is not bounded in P*?([a, b], u); hence it is not well
defined in P*?([a,b],u) by Lemma 4.1. Finally, Theorem 3.1 in [R]
shows that P is dense in W*?([a, b], u), since w, € B,((a,b)). |

We present here a case in which the condition x e ESD is equivalent to
M bounded.

THEOREM 4.7. Let us consider 1 <p < oo and u = (g, ..., itz) a finite vec-
torial measure with A a compact set. Assume that # supp pu;< o for
1 < j<k. Then, the multiplication operator is bounded in P*?(A, u) if and
only if ne ESD.

Proof. Let us assume that u¢ ESD. Then there exist x,e4 and
0 <i<k such that u;({xo})>0 and u, ;({xe})=0, since #supp u,< o0
for 1 < j<k. This hypothesis also shows that there exists a neighbourhood
U of xo with 1;(U\{x,})=0 for 1 < j<k. Then Corollary 4.3 with k,=0
gives that the multiplication operator is not bounded in P*?(4, u).

If ue ESD, then the proof of Theorem 4.1 shows that M is bounded in
Par(d,p). 1
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Theorem C shows that the condition #'(4, u) # {0} implies that M
is not bounded in P%?(4,u) for p-admissible measures u with
Wk P(A, u)=P. If u is not p-admissible, we can apply the following result.

THEOREM 4.8. Let us consider 1 <p<oo, u=(ug, .., ltx) a finite vec-
torial measure with A a compact set and a connected component (a, f) of

QiU - UQy. Assume that po({a}) =po({f}) =0, u=p* in [o B],
H ([, B, 1) # {0}, and that there exist c, e >0 with

dpjpr(x) <clx—al?du;(x),  xela—ea],
dujr(x)<c|x—plPdu(x),  xel[p, f+el,
for 0< j<k. Then M is not bounded in P*?(A, ).

Proof. Let us consider a function ge % ([, f], ) which is not identi-
cally zero. It is easy to see that ge P, _, (see the arguments in the proof
of Proposition 3.1). Without loss of generality we can assume that
deg g =max{degrire # ([a, f1,u)}. Then we have ||l «rra p7.=0
and [ xq | wko(ra, g1, ) >0, since xq¢ A ([, f1, ). The hypotheses and
Lemma 3.1 show that there exist g, € C°(R) with

lim |g,| wk 4, u) = lqll whk (o, 1, 1) — 0
n— oo

and

g0 | e pea, oy = 1% wrenpa, s> 0

(it is enough to multiply ¢ by functions in C°(R) with value 1 in [«, £],
as in the proof of Theorem 3.1). The proof is finished since g, and its
derivatives can be approximated uniformly by polynomials. ||

We also have localization results for the multiplication operator.
THEOREM 4.9. Let us consider 1 <p < oo and u = (i, .-, ity) a finite vec-

torial measure with A a compact set. Assume that for every x, € A there exist
g, ¢>0 (which can depend on x,) such that

quH Wk P([xg—&, xo+2]1, 1) <c HQH W P([xg—e, xg+el, p1) >
for every q € P. Then the multiplication operator is bounded in P*?(4, u).

The proof of this result is immediate. We have a partial converse of
Theorem 4.9.
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THEOREM 4.10. Let us consider 1 <p< oo and u= (ug, .., 4;) a finite
vectorial measure with A a compact set. Assume that there exist x, € A and
e0>0 with | s s x,+e, P-admissible and ([xo—eo, Xo+&0], 1) €%y If
the multiplication operator is bounded in P*? (A, ), then for each 0 <& <eg,
there exists ¢ >0 such that

quH Wk’I’([xOfe, xg+el, 1) <c HqH Wk’P([xost,xOJrso],y) s
for every q € P.

Proof. Let us fix 0 <e<g,. We can choose compact intervals J, <
[X0—€0, Xo—¢], J» S[xo+¢& Xo+&] and integers 0 <k, k, <k satisfying
form=1,2,J, Q%Y ifk, >0, and u,;(J,,) =0 for k,, < j<k, if k,, <k.
If K:=J, uJ,, we have ;(K) < oo for 0< j<k, since  is finite.

Take a fixed function ¢ € C((xq— &g, Xo+ &) With 0< o <1, p=11in
[xo—¢ xo+¢] and supp ¢’ € K. Theorem 3.2 shows that there exists a
positive constant ¢ such that

logl w4, u) < C lell W P([xy — 89> Xo+ 891> 1) (4.4)

for every ge C¥(R). Since 4 is a compact set, Bernstein’s proof of the
Weierstrass Theorem gives that | xg|l y«.r4, ) < | M|l | €]l wrra, .)> fOr €very
ge C*(R). Consequently, ¢ =1 in [x,—¢&, X, +¢&] and (4.4) give

IXG 1wk py— o %0+ 21,00 < IXPG ik, )
< IMINql wienca, oy < 1l oty —eq xg o et 5
for every g € P. This finishes the proof of Theorem 4.10. |
Theorem 4.10 is not true without the hypothesis ([ x,—é&q, Xo+ &0, &)

€ %y, as is shown by the following example.

ExamPLE. Let us consider the vectorial measure u = (uqg, ..., ttz) With
du :=}5[0’1]u[2’3]dx, duy :=x[0’3]dx, and u;:=0 for O0<j<k if k>1.
Theorems 5.1 and 52 in [RARP2] show that M is bounded in
Wk »([0,3], 1), since u is a measure of type 1 in [0, 3] (see Definition 10
in [RARP2]) and #°([0, 3], u) ={0}. However, for g(x) :=x*~"! we have
for any 0<n<1/2, |xqllwrriisn2—n1m=IKLo1192-47y>0 and
4l whkp([1,2], 1) — 0.
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