
Journal of Approximation Theory 109, 157�197 (2001)

The Multiplication Operator in Sobolev Spaces with
Respect to Measures

Jose� M. Rodr@� guez1

Department of Mathematics, Universidad Carlos III de Madrid,
Avenida de la Universidad, 30, 28911 Legane� s, Madrid, Spain

E-mail: jomaro�math.uc3m.es

Communicated by Walter Van Assche

Received January 6, 1997; accepted in revised form November 6, 2000;
published online February 5, 2001

We consider the multiplication operator, M, in Sobolev spaces with respect to
general measures and give a characterization for M to be bounded, in terms of
sequentially dominated measures. This has important consequences for the
asymptotic behaviour of Sobolev orthogonal polynomials. Also, we study proper-
ties of Sobolev spaces with respect to measures. � 2001 Academic Press
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1. INTRODUCTION

Weighted Sobolev spaces are an interesting topic in many fields of math-
ematics (see, e.g., [HKM, K, Ku, KO, KS, T]. In [ELW1, EL, ELW2]
the authors study some examples of Sobolev spaces with respect to general
measures instead of weights, in relation with ordinary differential equations
and Sobolev orthogonal polynomials. The papers [RARP1, RARP2] are
the beginning of a theory of Sobolev spaces with respect to general
measures. We are interested in the relationship between this topic and
Sobolev orthogonal polynomials.

Let us consider 1�p<� and +=(+0 , ..., +k) a vectorial Borel measure
in R with 2 :=�k

j=0 supp +j . The Sobolev norm of a function f of class
Ck (R) in W k, p (2, +) is defined by

& f & p
W k, p(2, +) := :

k

j=0
| | f ( j)| p d+j .

We talk about Sobolev norm although it can be a seminorm; in this case
we will take equivalence classes, as usual.
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We say that + # M if every polynomial belongs to L1 (+0) & L1 (+1)
& } } } & L1 (+k). Therefore if + # M, every polynomial belongs to
Lp (+0) & L p (+1) & } } } & L p (+k) for any 1�p<�. Obviously, every + # M

is finite. If 2 is a compact set, we have + # M if and only if + is finite. If
+ # M, we denote by Pk, p (2, +) the completion of polynomials P with the
norm of W k, p (2, +). By a theorem in [LP] we know that the zeros of the
Sobolev orthogonal polynomials with respect to the scalar product in
W k, 2 (2, +) are contained in the disk [z: |z|�2 &M&], where the multi-
plication operator (Mf )(x)=x f (x) is considered in the space Pk, 2 (2, +).
Consequently, the set of the zeros of the Sobolev orthogonal polynomials
is bounded if the multiplication operator is bounded. The location of these
zeros allows to prove results on the asymptotic behaviour of Sobolev
orthogonal polynomials (see [LP]).

In [LP] also appears the following result: If 2 is a compact set and +
is a finite measure in 2 sequentially dominated, then M is a bounded
operator in Pk, 2 (2, +), where the vectorial measure + is sequentially
dominated if *supp +0=� and d+j= f j d+ j&1 with fj bounded for 1�
j�k. In that paper the authors ask for other conditions on M to be
bounded.

It is not difficult to see that the multiplication operator can be bounded
when the vectorial measure is not sequentially dominated. In Section 4
below and in [RARP2] other conditions are given in order to have the
boundedness of M.

Now, let us state the main results here. We refer to the definitions in
Sections 2 and 4. In the paper, the results are numbered according to the
section where they are proved.

Here we obtain the following characterization for the boundedness of the
multiplication operator in terms of comparable norms. Observe that this
characterization is closely related to sequentially dominated measures,
since we say that a vectorial measure + belongs to the class ESD (extended
sequentially dominated) if and only if d+j= fj d+ j&1 with f j bounded for
1� j�k.

Theorem 4.1. Let us consider 1�p<� and +=(+0 , ..., +k) a finite vec-
torial measure with 2 a compact set. Then, the multiplication operator is
bounded in Pk, p (2, +) if and only if there exists a vectorial measure +$ # ESD
such that the Sobolev norms in W k, p (2, +) and W k, p (2, +$) are comparable
on P. Furthermore, we can choose +$=(+$0 , ..., +$k ) with +$j :=+j++j+1

+ } } } ++k .

We have also necessary conditions and sufficient conditions for M to be
bounded. The following are the most important.
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Theorem 4.3. Let us consider 1�p<� and a finite vectorial measure
+ with 2 a compact set. Assume that (2ad, +ad) # C0 and that for each
1� j�k we have +j (2"(Jj&1 _ Kj&1))=0, where Kj&1 is a finite union of
compact intervals contained in 0( j&1), and Jj&1 is a measurable set with
d+j= fj d+j&1 in Jj&1 and f j bounded. Then the multiplication operator is
bounded in Pk, p (2, +).

Theorem 4.4. Let us consider 1<p<� and +=(+0 , ..., +k) a finite
vectorial measure such that 2 is a compact set and there exist '0>0, x0 # R
and 0<k0�k with +j ([x0&'0 , x0+'0])=0 for k0< j�k. Let us assume
that x0 is neither right nor left (k0&1)-regular. If +k0

([x0])>0 and
+k0&1 ([x0])=0, then the multiplication operator is not bounded in Pk, p (2, +).

Theorem 4.5. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R,
c>0, 0�k0<k and an open neighbourhood U of x0 such that

d+j+1 (x)�c |x&x0 | p d+j (x),

for x # U"[x0] and k0� j<k. If there exists i>k0 with +i ([x0])>0
and +i&1 ([x0])=0, then the multiplication operator is not bounded in
Pk, p (2, +).

In order to prove these results we also obtain some results on Sobolev
spaces with respect to measures, which are interesting by themselves.

Theorem 3.1. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R and
0�k0�k with +k0

([x0])=0 and satisfying the following property if k0<k:
there exist an open neighbourhood U of x0 and c>0 such that

d+j+1 (x)�c |x&x0 | p d+j (x),

for x # U and k0� j<k. Let us define

& :=(0, ..., 0, :k0
$x0

, :k0+1$x0
, ..., :k$x0

)

and N :=*[k0� j�k : :j>0] . Given a Cauchy sequence [qn]/P in
W k, p (2, +) and uk0

, ..., uk # R there exists a Cauchy sequence [rn]/P in
W k, p (2, +) with limn � � &qn&rn&W k, p(2, +)=0 and r ( j)

n (x0)=uj for
k0� j�k. Consequently Pk, p (2, ++&) is isomorphic to Pk, p (2, +)_RN.

Theorem 3.3. Let us consider 1<p<� and +=(+0 , ..., +k) a vectorial
measure such that there exist '0>0, x0 # R and 0<k0�k with
+j ([x0&'0 , x0+'0])<� for 0� j�k0 and +j ([x0&'0 , x0+'0])=0 for
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k0< j�k (if k0<k). Let us assume that x0 is neither right nor left
(k0&1)-regular and that +k0&1 ([x0])=0. Then, for any 0<'�'0 , there is
no positive constant c1 with

c1 | f (k0&1) (x0)|�& f &W k, p(2, +) ,

for every f # C �
c ([x0&', x0+']).

If we have also that + is finite and 2 is a compact set, then there is no
positive constant c2 with

c2 |q(k0&1) (x0)|�&q&W k, p(2, +) ,

for every q # P.

We also obtain results which allow to decide in many cases when two
norms are comparable. We have also localization results on the multiplica-
tion operator. Now we present the notation we use.

Notation. In the paper k�1 denotes a fixed natural number; obviously
W 0, p (2, +)=L p (2, +). All the measures we consider are Borel and positive
on R; if a measure is defined on a proper subset E/R, we define it on R"E
as the zero measure. Also, all the weights are non-negative Borel
measurable functions defined on R. If the measure does not appear
explicitly, we mean that we are using Lebesgue measure. We always work
with measures which satisfy the decomposition d+j=d(+j)s+d(+j)ac=
d(+j)s+h dx, where (+j)s is singular with respect to Lebesgue measure,
(+j)ac is absolutely continuous with respect to Lebesgue measure and h is
a Lebesgue measurable function (which can be infinite in a set of positive
Lebesgue measure); obviously the Radon�Nikodym Theorem gives that
every _-finite measure belongs to this class. Given a vectorial measure +
and a closed set E, we denote by W k, p (E, +) the space W k, p (2 & E, + |E).
We denote by supp & the support of the measure &. If A is a Borel set,
|A|, /

A
, A� , int(A) and *A denote, respectively, the Lebesgue measure, the

characteristic function, the closure, the interior and the cardinality of A. By
f ( j) we mean the j th distributional derivative of f. P and Pn denote respec-
tively the set of polynomials and the set of polynomials with degree less
than or equal to n. We say that an n-dimensional vector satisfies a one-
dimensional property if each coordinate satisfies this property. Finally, the
constants in the formulae can vary from line to line and even in the same
line.

The outline of the paper is as follows. Section 2 presents most of the
definitions we need to state our results. We prove some useful results on
Sobolev spaces in Section 3. Section 4 is dedicated to the proof of the
results for the multiplication operator.
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2. DEFINITIONS AND RESULTS

Obviously one of our main problems is to define correctly the space
W k, p (2, +). There are two natural definitions:

(1) W k, p (2, +) is the biggest space of (classes of) functions f which
are regular enough to have & f &W k, p(2, +)<�.

(2) W k, p (2, +) is the closure of a good set of functions (e.g., C� (R)
or P) with the norm & }&W k, p(2, +) .

However, both approaches have serious difficulties:
We consider first the approach (1). It is clear that the derivatives f ( j)

must be distributional derivatives in order to have a complete Sobolev
space. Therefore we need to restrict the measures + to a class of p-admis-
sible measures (see Definition 8). Roughly speaking + is p-admissible if (+j)s ,
for 0< j�k, is concentrated on the set of points where f ( j) is continuous,
for every function f of the space, because otherwise f ( j) is determined, up
to zero-Lebesgue measure sets (see Definitions 4 and 9 below). This will
force (+k)s to be identically zero. However, there will be no restriction on
the support of (+0)s .

This reasonable approach excludes norms appearing in the theory of
Sobolev orthogonal polynomials. Even if we work with the simpler case of
the weighted Sobolev spaces W k, p (2, w) (measures without singular part)
we must impose that wj belongs to the class Bp (see Definition 2 below) in
order to have a complete weighted Sobolev space (see [KO, RARP1]).

The approach (2) is simpler: we know that the completion of every
normed space exists (e.g., (C� (R), & }&W k, p(2, +)) or (P, & }&W k, p(2, +))). We
have two difficulties. The first one is evident: we do not have an explicit
description of the Sobolev functions as in (1) (in Section 4 of [RARP2]
there are several theorems which show that both definitions of Sobolev space
are the same for p-admissible measures). The second problem is worse: The
completion of a normed space is by definition a set of equivalence classes
of Cauchy sequences. In many cases this completion is not a function space
(see Theorem 3.1 below and its Remark).

However, since we need to work with the multiplication operator in
Pk, p (2, +), we have to choose this second approach if + is not p-admissible.

First of all, we explain the definition of generalized Sobolev space in
[RARP1]. We start with some preliminary definitions.

Definition 1. We say that two positive functions u, v are comparable
on the set A if there are positive constants c1 , c2 such that c1v(x)�u(x)
�c2v(x) for almost every x # A. Since measures and norms are functions
on measurable sets and vectors, respectively, we can talk about comparable
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measures and comparable norms. We say that two vectorial weights or
vectorial measures are comparable if each component is comparable.

In what follows, the symbol a �� b means that a and b are comparable
for a and b functions, measures or norms.

Obviously, the spaces L p (A, +) and L p (A, &) are the same and have
comparable norms if + and & are comparable on A. Therefore, in order to
obtain our results we can change a measure + to any comparable measure &.

Next, we shall define a class of weights which plays an important role in
our results.

Definition 2. If 1�p<�, we say that a weight w belongs to
Bp ([a, b]) if and only if

w&1 # L1�( p&1) ([a, b]).

Also, if J is any interval we say that w # Bp (J) if w # Bp (I ) for every
compact interval I�J. We say that a weight belongs to Bp (J), where J is
a union of disjoint intervals �i # A Ji , if it belongs to Bp (Ji), for i # A.

Observe that if v�w in J and w # Bp (J), then v # Bp (J).
The class Bp (R) contains the classical Ap (R) weights appearing in

harmonic analysis (see [Mu1, GR]). The classes Bp (0), with 0�Rn, and
Ap (Rn) (1<p<�) have been used in other definitions of weighted
Sobolev spaces in [KO, K], respectively.

Definition 3. We denote by AC([a, b]) the set of functions absolutely
continuous on [a, b], i.e., the functions f # C([a, b]) such that f (x)& f (a)
=�x

a f $(t) dt for all x # [a, b]. If J is any interval, ACloc (J) denotes the set
of functions absolutely continuous on every compact subinterval of J.

Definition 4. Let us consider 1�p<� and a vectorial measure +=
(+0 , ..., +k) with absolutely continuous part w=(w0 , ..., wk). For 0� j�k
we define the open set

0j :=[x # R : _ an open neighbourhood V of x with wj # Bp (V)] .

Observe that we always have wj # Bp (0j) for any 1�p<� and 0�
j�k. In fact, 0j is the greatest open set U with wj # Bp (U). Obviously, 0 j

depends on w and p, although p and + do not appear explicitly in the symbol
0j . Applying Ho� lder's inequality it is easy to check that if f ( j) # L p (0j , wj)
with 1� j�k, then f ( j) # L1

loc (0 j) and f ( j&1) # AC loc (0 j).

Hypothesis. From now on we assume that wj is identically 0 on the com-
plement of 0j .

162 JOSE� M. RODRI� GUEZ



Remark. We need this hypothesis in order to have complete Sobolev
spaces (see [KO, RARP1]). This hypothesis is satisfied, for example, if we
can modify wj in a set of zero Lebesgue measure in such a way that there
exists a sequence :nz0 with w&1

j [(:n , �]] open for every n. If wj is lower
semicontinuous, then this condition is satisfied.

The following definitions also depend on w and p, although w and p do
not appear explicitly.

Let us consider 1�p<�, +=(+0 , ..., +k) a vectorial measure and y # 2.
To obtain a greater regularity of the functions in a Sobolev space we con-
struct a modification of the measure + in a neighbourhood of y, using the
following Muckenhoupt weighted version of Hardy's inequality (see [Mu2;
M, p. 44]). This modified measure is equivalent in some sense to the
original one (see Theorem A below).

Muckenhoupt inequality. Let us consider 1�p<� and +0 , +1 measures
in (a, b ] with w1 :=d+1 �dx. Then there exists a positive constant c such
that

"|
b

x
g(t) dt"L p((a, b], +0)

�c &g&L p((a, b], +1)

for any measurable function g in (a, b], if and only if

sup
a<r<b

+0 ((a, r]) &w&1
1 &L 1�(p&1)([r, b])<�.

Definition 5. A vectorial measure +� =(+� 0 , ..., +� k) is a right completion
of a vectorial measure +=(+0 , ..., +k) with respect to y, if +� k :=+k and
there is an =>0 such that +� j :=+j on the complement of ( y, y+=] and

+� j :=+j++~ j , on ( y, y+=] for 0� j<k,

where +~ j is any measure satisfying:

(i) +~ j (( y, y+=])<�,

(ii) 4p (+~ j , +� j+1)<�, with

4p (&, _) := sup
y<r< y+=

&(( y, r]) "\d_
dx+

&1

"L 1� ( p&1)([r, y+=])

.

The Muckenhoupt inequality guarantees that if f ( j) # L p (+j) and
f ( j+1) # L p (+� j+1), then f ( j) # L p (+� j). If we work with absolutely continuous
measures, we also say that a vectorial weight w� is a completion of + (or of w).

163MULTIPLICATION OPERATOR IN SOBOLEV SPACES



Example. It can be shown that the following construction is always a
completion: we choose w~ j :=0 if w� j+1 � Bp (( y, y+=]); if w� j+1 # Bp ([ y,
y+=]) we set w~ j (x) :=1 in [ y, y+=]; and if w� j+1 # Bp (( y, y+=])"Bp ([ y,
y+=]) we take w~ j (x) :=1 for x # [ y+=�2, y+=], and

w~ j (x) :=
d

dx {\|
y+=

x
w� &1�( p&1)

j+1 +
&p+1

=
=

( p&1) w� j+1(x)&1�( p&1)

(� y+=
x w� &1�( p&1)

j+1 ) p if 1<p<�,

w~ j (x) :=&w� &1
j+1&&1

L �([x, y+=])+
d

dx
(&w� &1

j+1 &&1
L�([x, y+=]) ) if p=1,

for x # ( y, y+=�2).

Remarks. (1) We can define a left completion of + with respect to y
in a similar way.

(2) If w� j+1 # Bp ([ y, y+=]), then 4p (+~ j , w� j+1)<� for any measure
+~ j with +~ j (( y, y+=])<�. In particular, 4p (1, w� j+1)<�.

(3) If +, & are comparable measures, &� is a right completion of & if
and only if it is comparable to a right completion +� of +.

(4) If +, & are two vectorial measures with the same absolutely con-
tinuous part, then +� is a right completion of + if and only if it is a right
completion of &.

Definition 6. For 1�p<� and a vectorial measure +, we say that a
point y # R is right j-regular (respectively, left j-regular), if there exist =>0,
a right completion w� (respectively, left completion) of + and j<i�k such
that w� i # Bp ([ y, y+=]) (respectively, Bp ([ y&=, y])). Also, we say that a
point y # R is j-regular, if it is right and left j-regular.

Remarks. (1) A point y # R is right j-regular (respectively, left
j-regular), if at least one of the following properties is satisfied:

(a) There exist =>0 and j<i�k such that w i # Bp ([ y, y+=])
(respectively, Bp ([ y&=, y])). Here we have chosen w~ j=0.

(b) There exist =>0, j<i�k, :>0, and $<(i& j) p&1, such that

wi (x)�: |x& y|$ , for almost every x # [ y, y+=]

(respectively, [ y&=, y]). See Lemma 3.4 in [RARP1].

(2) If y is right j-regular (respectively, left), then it is also right
i-regular (respectively, left) for each 0�i� j.
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(3) We can take i= j+1 in this definition since by the second
remark after Definition 5 we can choose w� l=wl+1 # Bp ([ y, y+=]) for
j<l<i, if j+1<i.

(4) If +, & are two vectorial measures with the same absolutely con-
tinuous part, then y is right j-regular (respectively, left) with respect to +
if and only if it is right j-regular (respectively, left) with respect to &.

When we use this definition we think of a point [b] as the union of two
half-points [b+] and [b&]. With this convention, each one of the follow-
ing sets

(a, b) _ (b, c) _ [b+]=(a, b) _ [b+, c){(a, c),

(a, b) _ (b, c) _ [b&]=(a, b&] _ (b, c){(a, c),

has two connected components, and the set

(a, b) _ (b, c) _ [b&] _ [b+]=(a, b) _ (b, c) _ [b]=(a, c)

is connected.
We only use this convention in order to study the sets of continuity of

functions: we want that if f # C(A) and f # C(B), where A and B are union
of intervals, then f # C(A _ B). With the usual definition of continuity in an
interval, if f # C([a, b)) & C([b, c]) then we do not have f # C([a, c]). Of
course, we have f # C([a, c]) if and only if f # C([a, b&]) & C([b+, c]),
where, by definition, C([b+, c])=C([b, c]) and C([a, b&])=C([a, b]).
This idea can be formalized with a suitable topological space.

Let us introduce some notation. We denote by 0( j) the set of j-regular
points or half-points, i.e., y # 0( j) if and only if y is j-regular, we say that
y+ # 0( j) if and only if y is right j-regular, and we say that y& # 0 ( j) if and
only if y is left j-regular. Obviously, 0(k)=< and 0j+1 _ } } } _ 0k �0( j).
Observe that 0( j) depends on p (see Definition 6).

Remark. If 0� j<k and I is an interval, I�0( j), then the set
I"(0j+1 _ } } } _ 0k) is discrete (see the Remark before Definition 7 in
[RARP1]).

Definition 7. We say that a function h belongs to the class ACloc (0( j))
if h # ACloc (I ) for every connected component I of 0( j).

Definition 8. We say that the vectorial measure +=(+0 , ..., +k) is
p-admissible if (+j)s (R"0 ( j))=0 for 1� j�k.

We use the letter p in p-admissible in order to emphasize the dependence
on p (recall that 0( j) depends on p).
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Remarks. (1) There is no condition on supp (+0)s .

(2) We have (+k)s #0, since 0(k)=<.

(3) Every absolutely continuous measure is p-admissible.

Definition 9 (Sobolev Space). Let us consider 1�p<� and +=
(+0 , ..., +k) a p-admissible vectorial measure. We define the Sobolev space
W k, p (2, +) as the space of equivalence classes of

Vk, p (2, +) :=[ f : 2 � C � f ( j ) # AC loc (0( j )) for 0� j<k and

& f ( j )&L p(2, + j )
<� for 0� j�k],

with respect to the seminorm

& f &W k, p(2, +) :=\ :
k

j=0

& f ( j)& p
Lp(2, + j )+

1�p

.

Remarks. This definition is natural since when the (+j)s -measure of the
set where | f ( j)| is not continuous is positive, the integral � | f ( j)| p d(+ j)s

does not make sense. If we consider Sobolev spaces with real valued func-
tions every result in this paper also holds.

At this moment we can consider also norms like the following:

& f & p=|
1

&1
| f | p+|

0

&1
|x| p&1 | f $| p+|

1

0
| f $| p+| f (0+)| p ,

& f & p=|
1

0
| f | p+|

1

0
| f $| p+| f (0+)| p .

In the second example, we can write | f (0)| p instead of | f (0+)| p, since f is
not defined at the left of 0, and then this causes no confusion. Obviously
we always write (a+b) $x0

instead of a $x&
0

+b $x+
0

.

Definition 10. Let us consider 1�p<� and + a p-admissible
vectorial measure. Let us define the space K(2, +) as

K(2, +) :=[ g: 0(0) � C�g # V k, p (0 (0), + |0 (0)), &g&W k, p(0 (0), + |0(0))=0].

K(2, +) is the equivalence class of 0 in W k, p (0 (0), + | 0 (0) ). It plays an
important role in the general theory of Sobolev spaces and in the study of
the multiplication operator in Sobolev spaces in particular (see [RARP1,
RARP2], Theorem A below, and Theorem C in Section 4).

166 JOSE� M. RODRI� GUEZ



Definition 11. Let us consider 1 � p < � and + a p-admissible
vectorial measure. We say that (2, +) belongs to the class C0 if there exist
compact sets Mn , which are a finite union of compact intervals, such that

(i) Mn intersects at most a finite number of connected components
of 01 _ } } } _ 0k ,

(ii) K(Mn , +)=[0],

(iii) Mn �Mn+1 ,

(iv) �n Mn=0(0).

We say that (2, +) belongs to the class C if there exists a measure
+$0 =+0+�m # D cm$xm

with cm>0, [xm]/0(0), D�N and (2, +$) # C0 ,
where +$=(+$0 , +1 , ..., +k) is minimal in the following sense: there exists
[Mn] corresponding to (2, +$) # C0 such that if +0"=+$0 &cm0

$xm0
with

m0 # D and +"=(+0", +1 , ..., +k), then K(Mn , +"){[0] if xm0
# Mn .

Remarks. (1) The condition (2, +) # C is not very restrictive. In fact,
the proof of Theorem A below (see [RARP1, Theorem 4.3]) gives that if
0(0)"(01 _ } } } _ 0k) has only a finite number of points in each connected
component of 0(0), then (0� , +) # C. If furthermore K(2, +)=[0], we have
(2, +) # C0 .

(2) Since the restriction of a function of K(2, +) to Mn is in
K(Mn , +) for every n, then (2, +) # C0 implies K(2, +)=[0].

(3) If (2, +) # C0 , then (2, +) # C, with +$=+.

(4) The proof of Theorem A below gives that if for every connected
component 4 of 01 _ } } } _ 0k we have K(4� , +)=[0], then (2, +) # C0 .
Condition *supp +0 | 4� & 0 (0)�k implies K(4� , +)=[0].

The next results, proved in [RARP1], play a central role in the theory
of Sobolev spaces with respect to measures (see the proofs in [RARP1,
Theorems 4.3 and 5.1]).

Theorem A. Let us suppose that 1�p<� and +=(+0 , ..., +k) is a
p-admissible vectorial measure. Let Kj be a finite union of compact intervals
contained in 0( j), for 0� j<k and +� a right (or left ) completion of +. Then:

(a) If (2, +) # C0 there exist positive constants c1=c1 (K0 , ..., Kk&1)
and c2=c2 (+� , K0 , ..., Kk&1) such that

c1 :
k&1

j=0

&g( j)&L �(Kj)
�&g&W k, p(2, +) ,

c2 &g&W k, p(2, +� )�&g&W k, p(2, +) , \g # V k, p (2, +).
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(b) If (2, +) # C there exist positive constants c3=c3 (K0 , ..., Kk&1)
and c4=c4 (+� , K0 , ..., Kk&1) such that for every g # Vk, p (2, +), there exists
g0 # Vk, p (2, +), independent of K0 , ..., Kk&1 , c3 , c4 and +� , with

&g0& g&W k, p(2, +)=0,

c3 :
k&1

j=0

&g ( j)
0 &L �(Kj)

�&g0&W k, p(2, +)=&g&W k, p(2, +) ,

c4 &g0&W k, p(2, +� )�&g&W k, p(2, +) .

Furthermore, if g0 , f0 are these representatives of g, f respectively, we have
for the same constants c3 , c4

c3 :
k&1

j=0

&g ( j)
0 & f ( j)

0 &L �(Kj)
�&g& f &W k, p(2, +) ,

c4 &g0& f0 &W k, p(2, +� )�&g& f &W k, p(2, +) .

Remark. Theorem A is proved in [RARP1] with the additional
hypothesis that +~ :=+� &+ is absolutely continuous, since [RARP1] only
uses absolutely continuous completions, but the same proof also works in
the general case.

Theorem B. Let us consider 1�p<� and +=(+0 , ..., +k) a p-admissible
vectorial measure with (2, +) # C. Then the Sobolev space W k, p (2, +) is
complete.

3. RESULTS ON SOBOLEV SPACES

We start this section with a technical result which shows how to modify
a measure in order to have (2, +) # C0 . We use this proposition in the proof
of Corollary 3.2 below.

Proposition 3.1. Let us consider 1�p<� and +=(+0 , ..., +k) a p-ad-
missible vectorial measure. Then there exists a measure +0*�+0 with +0*&+0

discrete and finite, (+0*&+0)(R"0(0))=0, and such that +* :=(+0*, +1 , ..., +k)
is p-admissible and (2, +*) # C0 . We have also Vk, p (2, +) & L� (0(0))�
Vk, p (2, +*) and

& f &W k, p(2, +*)�& f &W k, p(2, +)+& f &L �(0 (0)) ,

for every f # Vk, p (2, +).
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Proof. Let us consider the connected components [Am]M
m=1 (M #

N _ [�] ) of 01 _ } } } _ 0k . For each m, choose k points x1
m , ..., xk

m # Am ,
and now define the measure

+0* :=+0+
1
k

:
k

i=1

:
M

m=1

2&m$x i
m

.

Obviously +0*&+0 is discrete and finite, and (+0*&+0)(R"0 (0))=0.
Obviously +* is p-admissible since + is p-admissible. We see now that
K(A� m , +*)=[0].

Let us consider q # K(A� m , +*). For each y # Am , there is a 1� j�k with
y # 0j . Let I be the connected component of 0j which contains the point
y. If wj denotes the absolutely continuous part of +j , we have that

|
I

|q( j) (x)| p wj (x) dx=0,

since q # K(A� m , +*). Ho� lder's inequality gives

&q( j)&L 1(I$)�&q( j)&Lp(I$, wj)
&w&1

j &L 1�(p&1)(I$)=0,

for every compact interval I$/I, since wj # Bp (0j). Then &q( j)&L1(I )=0 and
since q( j&1) is locally absolutely continuous in I, it has to be constant in
I, and consequently q( j)#0 in I. We have that q | I # Pj&1 �Pk&1 . Then we
obtain q |Am

# Pk&1 , since Am is a connected set. We conclude q=0 in Am

since q(x1
m)= } } } =q(xk

m)=0. The same argument gives K(J, +)=[0] for
every closed interval J/A� m with x1

m , ..., xk
m # J.

For each m and n, let us consider a compact interval Jn, m with
x1

m , ..., xk
m # Jn, m , Jn, m �Jn+1, m and �n Jn, m=A� m & 0(0). We define now

Mn :=�m # Dn
Jn, m , where Dn :=[m : |Am |�1�n and Am & (&n, n){<].

Since *Dn�2n2+1 and K(Jn, m , +*)=[0], this choice of [Mn] gives
(2, +*) # C0 .

Assume now that f # Vk, p (2, +) & L� (0(0)). We have that

| f (x i
m)|�& f &L �(0 (0)) ,

for every m and i, since f is continuous at x i
m . We have also

| | f | p d+0*=| | f | p d+0+| | f | p d(+0*&+0)�& f & p
L p(+0)+& f & p

L �(0 (0)) ,

& f &L p(+*0 )�& f &L p(+0)+& f &L �(0 (0)) ,

& f &W k, p(2, +*)�& f &W k, p(2, +)+& f &L �(0 (0)) ,
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since (+0*&+0)(R)=(+0*&+0)(0 (0))�1. Then we have Vk, p (2, +) &
L� (0(0))�V k, p (2, +*). K

An immediate computation gives the following technical result.

Lemma 3.1. Let us consider 1�p<� and +=(+0 , ..., +k) a vectorial
measure with

d+j+1 (x)�c p
1 |x&x0 | p d+j (x) ,

for 0� j<k, x0 # R and x in an interval I. Let . # C k (R) be such that
supp .$�[*1 , *1+t] _ [*2 , *2+t]�I, with *1+t<*2 , max[ |*1&x0 |,
|*1+t&x0 |, |*2&x0 |, |*2+t&x0 |]�c2t and &.( j)&L �(I )�c3 t& j for 0�
j�k. Then, there is a positive constant c0 which is independent of I, x0 , *1 ,
*2 , t, +, ., and g such that

&.g&W k, p(2, +)�c0&g&W k, p(I, +) ,

for every g # Ck (R) with supp (.g)�I.

Remarks. (1) The constant c0 can depend on c1 , c2 , c3 , p, and k.

(2) In the proof we only use the hypothesis g # Ck (R) to assure that
� | g( j)| p d+ j has sense (although it can be infinite). Therefore, if + is
p-admissible, the result is also true for every g # Vk, p (2, +) with
supp(.g)�I.

(3) Condition d+j+1 (x)�c p
1 |x&x0 | p d+j (x) means that +j+1 is

absolutely continuous with respect to +j , and that the Radon�Nikodym
derivative satisfies d+j+1 �d+ j�c p

1 |x&x0 | p. Proposition 3.2 below shows
that this condition is not as restrictive as it seems, since many weights with
analytic singularities can be modified in order to satisfy it.

We define now the functions

log1 x :=&log x, log2 x :=log(log1 x), ..., logn x :=log(logn&1 x).

With this definition we have the following result, which is a consequence
of Muckenhoupt inequality.

Proposition 3.2. Let us consider 1�p<� and w=(w0 , ..., wk) a finite
vectorial weight in (a, b). Assume also that there exist 0�k0<k, x0 # R, a
neighbourhood U of x0 , n # N, ci>0, = i�0 and :i , # i

1 , ..., # i
n # R for

k0�i�k such that

(i) wi (x) �� e&ci |x&x0 |&= i |x&x0 |:i log#
1
i

1 |x&x0 | } } } log# n
i

n |x&x0 | for
x # U and k0�i�k,
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(ii) (1+:i)�p � N if =i=0 and k0<i�k,

(iii) wk � Bp (U).

Then there exists a weight w* in (a, b) such that the Sobolev norms
W k, p ([a, b], w) and W k, p ([a, b], w*) are comparable for every function in
W k, p ([a, b], w) and satisfying

w*j+1 (x)�c |x&x0 | p wj*(x) ,

for k$0 � j<k and x # U, for some k0�k$0 <k. Furthermore, if k0 {k$0 then
we have w*k$0

# Bp (U).

The following result reveals a big problem when dealing with the
completion of P. Furthermore, it allows to prove Theorem 4.5 about the
multiplication operator.

Theorem 3.1. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R and
0�k0�k with +k0

([x0])=0 and satisfying the following property if k0<k:
there exist an open neighbourhood U of x0 and c>0 such that

d+j+1 (x)�c |x&x0 | p d+j (x) ,

for x # U and k0� j<k. Let us define

& :=(0, ..., 0, :k0
$x0

, :k0+1$x0
, ..., :k$x0

)

and N :=*[k0� j�k : :j>0] . Given a Cauchy sequence [qn]/P in
W k, p (2, +) and uk0

, ..., uk # R there exists a Cauchy sequence [rn]/P in
W k, p (2, +) with limn � � &qn&rn&W k, p(2, +)=0 and r ( j)

n (x0)=uj for
k0� j�k. Consequently Pk, p (2, ++&) is isomorphic to Pk, p (2, +)_RN.

Remark. Observe that Pk, p (2, ++&) is not a space of functions even
when Pk, p (2, +) is a space of functions. In fact, if q # P is an element of
Pk, p (2, +), then it represents RN elements of Pk, p (2, ++&), and therefore
there are infinitely many equivalence classes in Pk, p (2, ++&) whose
restriction to Pk, p (2, +) coincides with q. Hence, the values f ( j) (x0) for
k0� j�k do not represent anything related with the derivatives of
f # Pk, p (2, ++&).

Proof. It is enough to see that, given sequences [vn
k0

], ..., [vn
k]/R,

there exists a sequence [sn]/P converging to 0 in the norm of W k, p (2, +)
with s( j)

n (x0)=vn
j for k0� j�k, since then we can take rn :=qn&sn with

vn
j :=q ( j)

n (x0)&u j .

171MULTIPLICATION OPERATOR IN SOBOLEV SPACES



Let us consider the polynomial hn # Pk&k0
with h ( j&k0)

n (x0)=vn
j for

k0� j�k, a function . # C �
c (R) with 0�.�1 and

.(x) :={1, if x # [&1, 1],
0, if x � [&2, 2],

and the functions

.t (x) :=. \x&x0

t + ,

for each 0<t�t0 , where t0 is any positive number with supp .t0
/U. For

each n # N, define the function gn :=hn.tn
, where [tn] is a sequence con-

verging to 0, with 0<tn<t0 , which will be chosen later.
Let us define fn :=gn if k0=0 and

fn (x) :=|
x

x0+2tn

gn (t)
(x&t)k0&1

(k0&1)!
dt,

otherwise. Since we have

f ( j)
n (x)=|

x

x0+2tn

gn (t)
(x&t)k0& j&1

(k0& j&1)!
dt,

for 0� j<k0 , + is finite and 2 is compact, we obtain that

& f ( j)
n &L p(2, +j)

�c & f ( j)
n &L�(2)�c &gn&L 1(R)�c &hn&L 1([x0&2tn , x0+2tn]) , (3.1)

for 0� j<k0 . If k0<k, Lemma 3.1 gives that

:
k

j=k0

& f ( j)
n &L p(2, +j)

= :
k

j=k0

&g( j&k0)
n &L p(2, +j)

�c &hn.tn
&W k&k0 , p([x0&2tn , x0+2tn], (+k0 , ..., +k))

�c &hn&W k&k0 , p([x0&2tn , x0+2tn], (+k0
, ..., +k)) . (3.2)

We can apply Lemma 3.1 since

supp .$tn
�[x0&2tn , x0&tn] _ [x0+tn , x0+2tn]/[x0&2tn , x0+2tn] ,

max[ |&2tn | , |&tn | , tn , 2tn]=2tn ,

&.( j)
tn

&L �(R)=t& j
n &.( j)&L�(R)�ct& j

n for 0� j�k&k0 ,

supp gn=supp(hn.tn
)�[x0&2tn , x0+2tn].
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If k0=k, inequality (3.2) is also true since

& f (k)
n &Lp(2, +k)=&gn&L p(2, +k)�&hn&L p([x0&2tn , x0+2tn], +k) .

Inequalities (3.1) and (3.2) and the fact +k0
([x0])= } } } =+k ([x0])=0

allow us to choose tn small enough in order that

& fn&W k, p(2, +)<
1
n

. (3.3)

If 2* is the convex hull of 2 _ [x0], we can choose pn # P such that

& f ( j)
n & p ( j)

n &L �(2*)<
1
n

, (3.4)

for 0� j�k, since fn # C� (R). This is deduced from the compactness of 2
and Bernstein's proof of the Weierstrass Theorem, where the Bernstein
polynomials approximate any function in Ck ([a, b]) uniformly up to the
k-th derivative (see, e.g., [D, p. 113]).

In particular, we have that

| f ( j)
n (x0)& p ( j)

n (x0)|<
1
n

,

for 0� j�k. If we consider the polynomial =n # Pk with

=( j)
n (x0)= f ( j)

n (x0)& p ( j)
n (x0) ,

for 0� j�k, then there exists a positive constant c, which only depends on
2*, with

&= ( j)
n &L�(2*)<

c
n

, (3.5)

for 0� j�k. Therefore, the polynomial sn :=pn+=n satisfies

s( j)
n (x0)= p ( j)

n (x0)+= ( j)
n (x0)= f ( j)

n (x0)= g ( j&k0)
n (x0)=h ( j&k0)

n (x0)=vn
j ,

for k0� j�k, and (3.3), (3.4), and (3.5) show that there is a positive
constant c, which does not depend on n, with

&sn&W k, p(2, +)<
c
n

.

This finishes the proof of Theorem 3.1. K

The proof of Theorem 3.1 gives the following result.
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Corollary 3.1. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R and
0�k0�k with +k0

([x0])=0 and satisfying the following property if k0<k:
there exist an open neighbourhood U of x0 and c>0 such that

d+j+1 (x)�c |x&x0 | p d+j (x),

for x # U and k0� j<k. Given sequences [vn
k0

], ..., [vn
k]/R there exists a

sequence [sn]/P converging to 0 in the norm of W k, p (2, +) with
s( j)

n (x0)=vn
j for k0� j�k.

We have also the following consequences of Theorem 3.1.

Corollary 3.2. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R,
0�k0<k, an open neighbourhood U of x0 and c>0 such that

d+j+1 (x)�c |x&x0 | p d+j (x),

for x # U and k0� j<k. Then x0 is neither right nor left k0 -regular.

Proof. Without loss of generality we can assume that + is absolutely
continuous, since the j-regularity just depends on the absolutely con-
tinuous part of the measure. Consequently + is p-admissible. Assume that
x0 is right or left k0 -regular and consider the measure +* as in Proposition
3.1 with the additional condition x i

m {x0 for every m and i. Then
(2, +*) # C0 and we have by Theorem A

| g(k0) (x0)|�c &g&W k, p(2, +*) , \g # Vk, p (2, +),

and consequently

|q(k0) (x0)|�c &q&W k, p(2, +*) , \q # P ,

since +* finite and 2 compact imply +* # M. The measure +* satisfies the
hypotheses in Theorem 3.1 and therefore there exists a sequence of polyno-
mials [rn] with r (k0)

n (x0)=1 and limn � �&rn&W k, p(2, +*)=0, which con-
tradicts the last inequality.

Corollary 3.3. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R and
0�k0�k with +k0

([x0])=0 and satisfying the following property if k0<k:
there exists an open neighbourhood U of x0 such that + j (U)=0 for
k0< j�k. Let us define

& :=(0, ..., 0, :k0
$x0

, :k0+1$x0
, ..., :k$x0

)
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and N :=*[k0� j�k : : j>0]. Given a Cauchy sequence [qn]/P in
W k, p (2, +) and uk0

, ..., uk # R there exists a Cauchy sequence [rn]/P in
W k, p (2, +) with limn � � &qn&rn&W k, p(2, +)=0 and r( j) (x0)=uj for
k0� j�k. Consequently Pk, p (2, ++&) is isomorphic to Pk, p (2, +)_RN.

The following result (which will be used in the proof of Theorem 3.3) is
an improvement of Theorem 3.1 in [RARP2]. The same arguments used
in the proof of Theorem 3.1 in [RARP2] give this result.

Theorem 3.2. Let us consider 1�p<�, +=(+0 , ..., +k) a vectorial
measure and a closed set I�2 with + | I p-admissible and (I, +) # C0 . Assume
that K�I is a finite union of compact intervals J1 , ..., Jn and that for every
Jm there is an integer 0�km�k satisfying Jm �0(km&1), if km>0, and
+j (Jm)=0 for km< j�k, if km<k. If +j (K)<� for 0< j�k, then there
exists a positive constant c0 such that

c0 & fg&W k, p(2, +)�& f &W k, p(I, +) (sup
x # I

| g(x)|+&g&W k, p(I, +) ),

for every f, g # Vk, p (I, +) and defined on 2 with supp( fg)�I and
g$= g"= } } } = g(k)=0 in I"K.

Remark. The sets 0( j) are constructed with respect to (I, +).

Theorem 3.2 gives the following result corresponding to the case n=1
and k1=k.

Corollary 3.4. Let us consider 1�p<�, +=(+0 , ..., +k) a vectorial
measure and a closed set I�2 with + | I p-admissible and (I, +) # C0 . Assume
that K is a compact interval contained in I & 0(k&1). If +j (K)<� for
0< j�k, then there exists a positive constant c0 such that

c0 & fg&W k, p(2, +)�& f &W k, p(I, +) (sup
x # I

| g(x)|+&g&W k, p(I, +) ),

for every f, g # Vk, p (I, +) and defined on 2 with supp( fg)�I and g$=
g"= } } } = g(k)=0 in I"K.

We need some technical result.

Lemma 3.2. Let us consider 1<p<�, c1 , c2>0 and w a (one-dimen-
sional ) weight.

(1) If w satisfies

&w&L 1([:, ;])<c1 and c2<&w&1&L1�(p&1)([:, ;]) ,
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then there exists a weight v�w such that

&v&L 1([:, ;])<c1 and c2<&v&1&L 1�(p&1)([:, ;])<� .

(2) If w # L1 ([a, b]) and satisfies

&w&1&L 1�(p&1)([a, a+=])=�, for every =>0,

then there exists a weight v�w such that v # L1 ([a, b]),

&v&1&L 1�(p&1)([a+=, b])<� , for every =>0, and &v&1&L 1�(p&1)([a, b])=�.

Proof. We first prove (1). For each t>0, let us consider the function
wt :=max(t, w), which obviously satisfies wt�w. Recall that if + is a
_-finite measure in X, every measurable function g�0 satisfies

|
X

g d+=|
�

0
+([x # X : g(x)�*]) d*.

Therefore we have that

a(t) :=&wt &L 1([:, ;])=|
�

0
|[x # [:, ;] : max(t, w(x))�*]| d*

=|
�

t
|[x # [:, ;] : w(x)�*]| d*+(;&:) t,

bp (t)1�( p&1) :=|
;

:
w&1�( p&1)

t

=|
�

0
|[x # [:, ;] : min(t&1�( p&1), w(x)&1�( p&1))�*]| d*

=|
t&1�( p&1)

0
|[x # [:, ;] : w(x)&1�( p&1)�*]| d*

�t&1�( p&1) (;&:)<�.

Since a(t) and bp (t) are continuous functions for t>0 and

lim
t � 0+

a(t)=&w&L1([:, ;]) , lim
t � 0+

bp (t)=&w&1&L 1�( p&1)([:, ;]) ,

we can take v :=wt for small enough t>0.
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In order to prove (2), let us choose x0 :=b and xn+1 # (a, min[a+2&n,
xn]] such that

&w&1&L 1�(p&1)([xn+1 , xn])>1.

By part (1) we can take a weight vn�w in [xn+1 , xn] with

1<&v&1
n &L 1�(p&1)([xn+1 , xn])<�,

and

&vn&L 1([xn+1, xn])�&w&L 1([xn+1 , xn])+xn&xn+1 .

If we define v in (a, b] by v :=vn in (xn+1 , xn], we have v�w,

&v&1&L 1�(p&1)([a, b])=�, &v&1&L1�(p&1)([xn , b])<�,

&v&L 1([a, b])�&w&L 1([a, b])+b&a,

and this finishes the proof. K

Theorem A gives that if + is p-admissible, (2, +) # C0 and x0 is (k&1)-
regular, then we have

c1 | f (k&1) (x0)|�& f &W k, p(2, +) ,

for every f # W k, p (2, +). The following result, which will be used to prove
Theorem 4.4, says that this inequality is always false if x0 is not (k&1)-
regular.

Theorem 3.3. Let us consider 1<p<� and +=(+0 , ..., +k) a vectorial
measure such that there exist '0 > 0, x0 # R and 0 < k0 � k with
+j ([x0&'0 , x0+'0])<� for 0� j�k0 and +j ([x0&'0 , x0+'0])=0 for
k0< j�k (if k0<k). Let us assume that x0 is neither right nor left
(k0&1)-regular and that +k0&1 ([x0])=0. Then, for any 0<'�'0 , there is
no positive constant c1 with

c1 | f (k0&1) (x0)|�& f &W k, p(2, +) ,

for every f # C �
c ([x0&', x0+']).

If we have also that + is finite and 2 is a compact set, then there is no
positive constant c2 with

c2 |q(k0&1) (x0)|�&q&W k, p(2, +) ,

for every q # P.
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Remark. If E is a closed set, we denote by C �
c (E) the set of functions

f # C �
c (R) with supp f�E.

Proof. In order to prove the first part of the theorem, without loss of
generality we can assume that k0=k, since otherwise we can change 2 to
2 & [x0&'0 , x0+'0]. Let us denote by w the absolutely continuous part
of +. Observe that the fact that x0 is neither right nor left (k&1)-regular
is equivalent to

wk � Bp ([x0 , x0+']) _ Bp ([x0&', x0]), for every '>0.

We can assume that wj (x)�1 for 0� j<k if x # [x0&'0 , x0+'0] and
wk (x) # Bp ([x0&', x0+']"[x0]), since otherwise we can change wj (x) to
max (wj (x), 1) and wk (x) according to Lemma 3.2 in [x0&'0 , x0+'0].
This increases the right hand side of the first inequality and does not
change the fact that wk � Bp ([x0 , x0+']) _ Bp ([x0&', x0]) for every
'>0.

Observe that it is enough to prove the first part of Theorem 3.3 for
almost every ' # (0, '0] (with respect to Lebesgue measure). Let us fix
0<'�'0 with +k ([x0&'])=+k ([x0+'])=0 (the set of ''s in (0, '0]
which do not satisfy this is at most denumerable since +k ([x0&'0 ,
x0+'0])<�).

Since wk # Bp ((x0 , x0+'])"Bp ([x0 , x0+']), the function

U(t) :=|
x0+'

x0+t
w&1�( p&1)

k

is positive and continuous on (0, ') and limt � 0+ U(t)=�; since for any
sequence [ yn] with ynz0 as n � �

lim
n � � |

x0& yn

x0&'
w&1�( p&1)

k =�,

for n large enough there exists a point xn # (0, ') such that

|
x0+'

x0+xn

w&1�( p&1)
k =|

x0& yn

x0&'
w&1�( p&1)

k . (3.6)

We have also xnz0 as n � �. Therefore, we can choose decreasing
sequences [ yn] and [xn] satisfying (3.6) and +k ([x0& yn])=+k ([x0+
xn])=0 for every n.

Let us define S :=supp(+k)s and

hn :=w&1�( p&1)
k (/[x0&', x0& yn]"S&/[x0+xn , x0+']"S ).

Observe that hn # L1 (R), since wk # Bp ([x0&'0 , x0+'0]"[x0]).
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If we define

gn (x) :=|
x

x0+'
hn (t)

(x&t)k&1

(k&1)!
dt,

then g(k&1)
n =�x

x0+' hn # ACloc (R). We have also

gn (x)=|
x

x0+'
g (k&1)

n (t)
(x&t)k&2

(k&2)!
dt,

g ( j)
n (x)=|

x

x0+'
g (k&1)

n (t)
(x&t)k& j&2

(k& j&2)!
dt,

for 0� j�k&2. Therefore there exists a positive constant c such that

&g ( j)
n &L p([x0&', x0+'], +j)

=\|
x0+'

x0&' } |
x

x0+'
g (k&1)

n (t)
(x&t)k& j&2

(k& j&2)!
dt }

p

d+j (x)+
1�p

�c &g(k&1)
n &L1([x0&', x0+']) , (3.7)

for 0� j�k&2, since +j ([x0&', x0+'])<� for 0� j�k.
Since +k ([x0&'])=+k ([x0+'])=+k ([x0& yn])=+k ([x0+xn])=0

and +k ([x0&', x0+'])<�, given any =>0 we can choose a function
In # Cc ((x0&', x0& yn) _ (x0+xn , x0+')) such that

&In&hn&L p([x0&', x0+'], +k)�= and &In&hn&L 1([x0&', x0+'])�=,

by Lemma 3.1 in [R] (recall that hn # L p ([x0 & ', x0 + '], +k) &
L1 ([x0&', x0+']) and hn=0 on (x0& yn , x0+xn)). (This Lemma is just
a version of the classical approximation result.) Since +k ([x0&', x0+'])
<� and In # Cc ((x0&', x0& yn) _ (x0+xn , x0+')), by a convolution of
In with an approximation of identity, we can find a function Hn #
C�

c ((x0&', x0& yn) _ (x0+xn , x0+')) such that

&In&Hn&L p([x0&', x0+'], +k)�= and &In&Hn&L 1([x0&', x0+'])�=.

Then we have

&Hn&hn &Lp([x0&', x0+'], +k)�2= and &Hn&hn&L 1([x0&', x0+'])�2=.

(3.8)

We now define

Gn (x) :=|
x

x0+'
Hn (t)

(x&t)k&1

(k&1)!
dt.
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Let us fix a function . # C� (R) satisfying 0�.�1 in R, .=1 in
[x0&'�2, �) and .=0 in (&�, x0&'], and define Fn :=Gn ..

Assume that there is a positive constant c1 with

c1 | f (k&1) (x0)|�& f &W k, p(2, +) ,

for every f # C �
c ([x0&', x0+']). By Remark 1 after Definition 11 we

have ([x0&', x0+'], +) # C0 , since wk # Bp ([x0&', x0+']"[x0]) and
wj (x)�1 for 0� j<k, if x # [x0&', x0+'], and this implies that
0(0)"(01 _ } } } _ 0k) has at most three points ([x0&', x0 , x0+']) and
K([x0&', x0+'], +)=[0]. By Corollary 3.4, with K :=[x0&', x0&'�2],
we have

c1 |G (k&1)
n (x0)|=c1 |F (k&1)

n (x0)|�&Fn&W k, p(2, +)

�c &Gn &W k, p([x0&', x0+'], +) ,

and consequently

|G (k&1)
n (x0)|�c &Gn&W k, p([x0&', x0+'], +) , (3.9)

for every n. In order to apply Corollary 3.4 + must be p-admissible;
otherwise, applying Corollary 3.4, we can obtain (3.9) for +ad instead of +
(see Definition 15 in Section 4), and we have +ad�+.

By (3.8), we have that there exists a positive constant c, independent of
n and =, such that

&g ( j)
n &G ( j)

n &Lp([x0&', x0+'], +j)

�\|
x0+'

x0&' \|
x0+'

x
|hn (t)&Hn (t)|

|x&t|k& j&1

(k& j&1)!
dt+

p

d+ j (x)+
1�p

�c &hn&Hn&L 1([x0&', x0+'])�2c=,

for 0� j<k, since +j ([x0&', x0+'])<� for 0� j�k. This inequality
and (3.8) show that there exists a positive constant c such that

&gn&Gn&W k, p([x0&', x0+'], +)�c=, (3.10)

if we choose hn as g (k)
n (observe that if we change g (k)

n in a set B of zero
Lebesgue measure, this would change &g(k)

n &L p([x0&', x0+'], +k) if +k (B)>0).
We have also by (3.8)

| g (k&1)
n (x0)&G (k&1)

n (x0)|�|
x0+'

x0

|hn (t)&Hn (t)| dt

�&hn&Hn &L1([x0&', x0+'])�2=.
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Therefore, by (3.9) and (3.10), we obtain for some positive constant c

| g (k&1)
n (x0)|&2=�|G (k&1)

n (x0)|�c &Gn&W k, p([x0&', x0+'], +)

�c(&gn&W k, p([x0&', x0+'], +)+c=),

for every n and =>0. Consequently

| g (k&1)
n (x0)|�c &gn&W k, p([x0&', x0+'], +) ,

for every n. Therefore by (3.7) we have that there exists a positive constant
c such that

c | g (k&1)
n (x0)|�&g (k&1)

n &L1([x0&', x0+'])+&g (k&1)
n &Lp([x0&', x0+'], +k&1)

+&g (k)
n &Lp([x0&', x0+'], +k) ,

for every n. Since wk&1�1 in [x0&', x0+'], there exists a positive con-
stant c such that

c | g (k&1)
n (x0)|�&g (k&1)

n &Lp([x0&', x0+'], +k&1)+&hn&L p([x0&', x0+'], +k)

=&g (k&1)
n &Lp([x0&', x0+'], +k&1)+&hn&L p([x0&', x0+'], wk) ,

for every n, since g (k)
n =hn=0 in S=supp (+k)s .

For each =>0 there exists $>0 with +k&1 ([x0&$, x0+$])<=, since
+k&1 ([x0])=0 and +k&1 ([x0&', x0+']) is finite. Recall that g (k&1)

n #
AC([x0&', x0+']). Therefore, we have that

c | g (k&1)
n (x0)|�=1�p &g (k&1)

n &L �([x0&$, x0+$])

+&g (k&1)
n &Lp([x0&', x0&$] _ [x0+$, x0+'], +k&1)

+&hn&L p([x0&', x0+'], wk)

==1�p | g (k&1)
n (x0)|+&g (k&1)

n &L p([x0&', x0&$] _ [x0+$, x0+'], +k&1)

+(2 | g (k&1)
n (x0)| )1�p , (3.11)

since g (k&1)
n (x)=�x

x0+' hn , &g (k&1)
n &L�([x0&$, x0+$])=| g (k&1)

n (x0)|, and
(3.6) shows

&hn& p
L p([x0&', x0+'], wk)=|

x0& yn

x0&'
w&1�( p&1)

k +|
x0+'

x0+xn

w&1�( p&1)
k

=2 | g (k&1)
n (x0)| .

Since g (k&1)
n (x)=�x

x0+' hn and g (k&1)
n (x0)=�x0+'

x0+xn
w&1�( p&1)

k , we have that
limn � � | g (k&1)

n (x0)|=�x0+'
x0

w&1�( p&1)
k =�, since wk � Bp ([x0 , x0+']).
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Claim. We have that &g(k&1)
n &Lp([x0&', x0&$] _ [x0+$, x0+'], +k&1) is bounded.

If we have the claim, then as n � � in (3.11), we obtain c�=1�p (recall
that limn � � | g (k&1)

n (x0)|=�), and since =>0 is arbitrary we conclude
that c=0, which is a contradiction. This finishes the proof of the first part
of Theorem 3.3, except for the claim.

We now prove the claim. We have for x # [x0+$, x0+']

0�g (k&1)
n (x)�|

x0+'

x0+$
w&1�( p&1)

k .

The fact (3.6) gives g (k&1)
n (x0&')=0, and therefore g (k&1)

n (x)=�x
x0&' hn .

Then we have for x # [x0&', x0&$]

0�g (k&1)
n (x)�|

x0&$

x0&'
w&1�( p&1)

k .

This finishes the proof of the claim.
If we have also that + is finite and 2 is a compact set, then we obtain

the result for polynomials, since we can approximate the k th derivative of
each function in Ck (R) uniformly in 2 by polynomials. K

Theorems 3.3 and A give the following result.

Corollary 3.5. Let us consider 1<p<� and +=(+0 , ..., +k) a p-ad-
missible vectorial measure with (2, +) # C0 and such that there exist '0>0,
x0 # R and 0<k0�k with +j ([x0&'0 , x0+'0])<� for 0� j�k0 and
+j ([x0&'0 , x0+'0])=0 for k0< j�k (if k0<k). Then, there is a positive
constant c1 with

c1 | f (k0&1) (x0)|�& f &W k, p(2, +) ,

for every f # C �
c ([x0&'0 , x0+'0]) if and only if x0 is right or left

(k0&1)-regular.

4. PROOF OF THE RESULTS FOR M

First of all, some remarks about the definition of the multiplication
operator.

Definition 12. We say that the multiplication operator is well defined
in Pk, p (2, +) if given any sequence [sn] of polynomials converging to 0 in
W k, p (2, +), then [xsn] also converges to 0 in W k, p (2, +). In this case, if
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[qn] # Pk, p (2, +), we define M([qn]) :=[xqn]. If we choose another
Cauchy sequence [rn] representing the same element in Pk, p (2, +) (i.e.
[qn&rn] converges to 0 in W k, p (2, +)), then [xqn] and [xrn] represent
the same element in Pk, p (2, +) (since [x(qn&rn)] converges to 0 in
W k, p (2, +)).

This definition is as natural as the following.

Definition 13. If + is a p-admissible vectorial measure (and hence
W k, p (2, +) is a space of classes of functions), we say that the multiplication
operator is well defined in W k, p (2, +) if given any function h # Vk, p (2, +)
with &h&W k, p(2, +)=0, we have &xh&W k, p(2, +)=0. In this case, if [ f ] is an
equivalence class in W k, p (2, +), we define M([ f ]) :=[xf ]. If we choose
another representative g of [ f ] (i.e., & f& g&W k, p(2, +)=0) we have
[xf ]=[xg], since &x( f &g)&W k, p(2, +)=0.

The following result characterizes the spaces W k, p (2, +) with M well
defined in the sense of Definition 13 [RARP2, Theorem 5.2].

Theorem C. Let us consider 1�p<� and a p-admissible vectorial
measure +. Assume that xf # Vk, p (2, +) for every f # Vk, p (2, +). Then M is
well defined in W k, p (2, +) if and only if K(2, +)=[0].

Although both definitions are natural, it is possible for a p-admissible
measure + with W k, p (2, +)=P� (the closure of P is considered with the
norm in W k, p (2, +)) that M is well defined in W k, p (2, +) and not well
defined in Pk, p (2, +) (see Corollary 4.4). The following lemma charac-
terizes the spaces Pk, p (2, +) with M well defined.

Remark. From now on we use Definition 12 instead of Definition 13.

Lemma 4.1. Let us consider 1�p<� and +=(+0 , ..., +k) a vectorial
measure in M. The following facts are equivalent:

(1) The multiplication operator is well defined in Pk, p (2, +).

(2) The multiplication operator is bounded in Pk, p (2, +).

(3) There exists a positive constant c such that

&xq&W k, p(2, +)�c &q&W k, p(2, +) , for every q # P.

Remark. When we say that the multiplication operator is bounded in
Pk, p (2, +), we are assuming implicitly that it is well defined in Pk, p (2, +),
since otherwise the boundedness has no sense.

Proof. It is clear that condition (3) implies (1). If we assume (1), we have
that the multiplication operator M is continuous in 0 # (P, & }&W k, p(2, +)).
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Since M is a linear operator in the normed space (P, & }&W k, p(2, +)), we
know that M is bounded in (P, & }&W k, p(2, +)), which gives (3).

We now show the equivalence between (2) and (3). Let us consider an
element # # Pk, p (2, +). This element # is an equivalence class of Cauchy
sequences of polynomials under the norm in W k, p (2, +). Assume that a
Cauchy sequence of polynomials [qn] represents #. The norm of # is
defined as &#&P k, p(2, +)=limn � � &qn&W k, p(2, +) , which obviously does not
depend on the representative chosen. Hence, condition (2) is equivalent to

lim
n � �

&xqn&W k, p(2, +)�c lim
n � �

&qn &W k, p(2, +) ,

for every Cauchy sequence of polynomials [qn]. Now the equivalence
between (2) and (3) is clear. K

We now deduce the following particular case.

Corollary 4.1. Let us consider 1�p<� and +=(+0 , ..., +k) a p-ad-
missible vectorial measure in M with W k, p (2, +)=P� . If the multiplication
operator is well defined in Pk, p (2, +), then it is well defined and bounded in
W k, p (2, +).

Lemma 4.2. Let us consider 1�p<� and +=(+0 , ..., +k) a finite vec-
torial measure with 2 a compact set. Then, the multiplication operator is
bounded in Pk, p (2, +) if and only if there exists a positive constant c such
that

&q( j&1)&L p(2, +j)
�c &q&W k, p(2, +) ,

for every 1� j�k and q # P.

Proof. If M is bounded in Pk, p (2, +), we have that

&(xq) ( j)&Lp(2, +j)
�&M& &q&W k, p(2, +) ,

for every 1� j�k and q # P. Since

&(xq)( j)&L p(2, +j)
=&xq( j)+ jq( j&1)&L p(2, +j)

�&q( j&1)&L p(2, +j)
&K &q( j)&L p(2, +j)

,
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with K :=max[ |x|: x # 2], we have

&q( j&1)&L p(2, +j)
�K &q( j)&L p(2, +j)

+&M& &q&W k, p(2, +)

�(K+&M&) &q&W k, p(2, +) ,

for every 1� j�k and q # P.

We now prove the converse implication. We have

&(xq) ( j)&L p(2, +j)
=&xq( j)+ jq( j&1)&Lp(2, +j)

� j &q( j&1)&L p(2, +j)
+K &q( j)&L p(2, +j)

,

with K :=max[ |x|: x # 2], for every 1� j�k and q # P. Then

&(xq)( j)& p
Lp(2, +j)

�2 p&1 ( jp &q( j&1)& p
L p(2, +j)

+K p &q( j)& p
L p(2, +j)

)

�2 p&1 (k pc p &q& p
W k, p(2, +)+K p &q( j)& p

L p(2, +j)
),

for every 0� j�k and q # P (if j=0 the inequality is trivial). Consequently

&xq& p
W k, p(2, +)�2 p&1 (k p+1c p &q& p

W k, p(2, +)+K p &q& p
W k, p(2, +) ),

and

&xq&W k, p(2, +)�2( p&1)�p (k p+1c p+K p)1�p &q&W k, p(2, +) ,

for every q # P. Hence, Lemma 4.1 gives that M is bounded in Pk, p (2, +).
K

In the following we often use the next result. We omit the proof since it
is elementary.

Lemma 4.3. Let us consider 1�p<� and +=(+0 , ..., +k), +$=(+$0 , ..., +$k)
vectorial measures in M, with 2=�k

j=0 supp + j=�k
j=0 supp +$j . If the

Sobolev norms in W k, p (2, +) and W k, p (2, +$) are comparable on P, then:

(1) Pk, p (2, +)=Pk, p (2, +$).

(2) M is bounded in Pk, p (2, +) if and only if it is bounded in
Pk, p (2, +$).

Definition 14. We say that a vectorial measure +=(+0 , ..., +k) belongs
to the class ESD if d+j= f j d+j&1 , with fj bounded for 1� j�k.

Remark. A vectorial measure + is sequentially dominated if and only if
+ # ESD and *supp +0=�. If + # ESD, observe that 0 is the unique poly-
nomial q with &q&W k, p(2, +)=0 if and only if *supp +0=�.
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Theorem 4.1. Let us consider 1�p<� and +=(+0 , ..., +k) a finite vec-
torial measure with 2 a compact set. Then, the multiplication operator is
bounded in Pk, p (2, +) if and only if there exists a vectorial measure +$ # ESD
such that the Sobolev norms in W k, p (2, +) and W k, p (2, +$) are comparable
on P. Furthermore, we can choose +$=(+$0 , ..., +$k ) with +$j :=+j++j+1+
} } } ++k .

Proof. Assume that there exists a vectorial measure +$ # ESD such that
the Sobolev norms in W k, p (2, +) and W k, p (2, +$) are comparable on P.
By lemmas 4.2 and 4.3 it is enough to show

&q( j&1)&L p(2, +j$)
�c &q&W k, p(2, +$) , (4.1)

for every 1� j�k and q # P. The hypothesis +$ # ESD gives

| |q( j&1)| p d+$j =| |q( j&1)| p fj d+$j&1�& fj &� | |q( j&1)| p d+$j&1 ,

where & fj&�=supx # 2 | f j (x)|, and then we have (4.1).
Assume now that M is bounded in Pk, p (2, +). Let us consider the

vectorial measures +0, +1, ..., +k&1, +k defined by

+ j
i :=+i , if 0�i< j,

+ j
i := :

k

l=i

+l , if j�i�k.

Observe that +k=+ and +0 is the measure +$ defined at the end of the state-
ment of Theorem 4.1. These vectorial measures satisfy, for 0�i�k and
0< j�k,

+ j&1
i :=+ j

i , if i{ j&1, (4.2)

+ j&1
j&1 :=+ j

j++j&1=+ j
j++ j

j&1 . (4.3)

Therefore we have &q&W k, p(2, + j)�&q&W k, p(2, + j&1) , for every q # P and
1� j�k.

Since +0 # ESD it is enough to show that the Sobolev norms in
W k, p (2, +k) and W k, p (2, +0) are comparable on P. We prove this by
showing for 1� j�k that the Sobolev norms in W k, p (2, + j) and
W k, p (2, + j&1) are comparable on P and M is bounded in Pk, p (2, + j&1).
We prove this last statement by reverse induction on j.

If j=k, we have that M is bounded in Pk, p (2, +k), since +k=+. Lemma
4.2 gives that

&q(k&1)&L p(2, +k
k)=&q(k&1)&L p(2, +k)�c &q&W k, p(2, +)=c &q&W k, p(2, +k) ,
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for every q # P. This inequality and (4.3) give

&q(k&1)& p
L p(2, +k&1

k&1)�c p &q& p
W k, p(2, + k)+&q(k&1)& p

L p(2, + k
k&1)

�(c p+1) &q& p
W k, p(2, + k) ,

for every q # P. This fact and (4.2) show that the Sobolev norms in
W k, p (2, +k) and W k, p (2, +k&1) are comparable on P. Therefore Lemma
4.3 shows that M is bounded in Pk, p (2, +k&1), since it is bounded in
Pk, p (2, +k).

Assume now that the induction hypothesis holds for j+1. Then we have
that M is bounded in Pk, p (2, + j). Lemma 4.2 shows that

&q( j&1)&L p(2, +j
j)
�c &q&W k, p(2, + j) ,

for every q # P. This inequality and (4.3) show

&q( j&1)& p
L p(2, + j&1

j&1)�c p &q& p
W k, p(2, +j)+&q( j&1)& p

L p(2, + j
j&1)

�(c p+1) &q& p
W k, p(2, + j) ,

for every q # P. This fact and (4.2) show that the Sobolev norms in
W k, p (2, + j) and W k, p (2, + j&1) are comparable on P. Then Lemma 4.3
shows that M is bounded in Pk, p (2, + j&1), since it is bounded in
Pk, p (2, + j).

This finishes the induction argument and the proof of Theorem 4.1. K

Obviously the best way to deduce that + and +$ are comparable is to
prove that +$ can be obtained by a finite number of completions of +. In
order to check this the following result is useful.

Proposition 4.1. Let us consider 1�p<�, a vectorial measure + and
a fixed 0< j�k. Assume that +j ((a, b])<�, wj :=d+ j �dx # Bp ((a, b]), w j

is comparable to a monotone function in (a, a+=] and (+j)s ((a, a+=])=0
for some =>0. Then 4p (+ j , +j)<�, where we are considering the interval
(a, b] in the definition of 4p .

Remark. The result is not true without the monotonicity hypothesis,
even when + would be absolutely continuous, as is shown in the following
example.

Example. For each 1�p<� there exists a weight w # L� ([a, b]) &
Bp ((a, b]) with 4p (w, w)=�:
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Without loss of generality we can assume that [a, b]=[0, 1]. We give
the example for 1<p<�. The case p=1 is similar. Choose a sequence of
positive numbers [hn] growing to infinity with

lim
n � �

2&2n \ :
n

j=1

hj 2&2j+
p&1

=�,

and define

w(x) :={1,
h1&p

n ,
if x # (2&2n&1, 2&2n],
if x # (2&2n, 2&2n+1].

It is immediate that

|
2&2n

0
w�2&2n&1 and |

1

2&2n
w&1�( p&1)� :

n

j=1

h j 2&2j,

and hence we have 4p (w, w)=� and w # L� ([0, 1]) & Bp ((0, 1]).

Proof. We prove the case 1<p<�. The proof is similar in the case
p=1. If wj # Bp ([a, b]) the result is immediate. Assume now that
wj � Bp ([a, b]). Without loss of generality we can assume that wj is a
monotone function in (a, a+=]. We can assume also that wj (a+=)<�,
since otherwise we can take a smaller =. Then wj is a non-decreasing func-
tion in (a, a+=] and limx � a+ wj (x)=0, since otherwise w j # Bp ([a, b]).
For a<r�a+=, if I :=�b

a+= w&1�( p&1)
j , we have that

+j ((a, r]) \|
b

r
w&1�( p&1)

j +
p&1

=\|
r

a
wj+\|

a+=

r
w&1�( p&1)

j +I+
p&1

�(r&a) wj (r)((a+=&r) wj (r)&1�( p&1)+I ) p&1

�= (=+wj (a+=)1�( p&1) I ) p&1 .

For a+=<r<b,

+j ((a, r]) \|
b

r
w&1�( p&1)

j +
p&1

�+j ((a, b]) I p&1 .
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These two inequalities give 4p (+ j , +j)<�. K

The following result is very useful since in many cases it allows to reduce
the study of the boundedness of M in an abstract space Pk, p (2, m) to the
study of the same property in Pk, p (2, +) with a p-admissible measure +.
This has two advantages: the new space is a space of functions and there
are results of boundedness for M with + p-admissible (see Theorem 4.3
below and [RARP2, Sect. 5]).

Theorem 4.2. For 1�p<�, let us consider a finite p-admissible vec-
torial measure + and a finite vectorial measure & in the compact set
2 :=�k

j=0 supp +j . Assume that (2, +) # C0 and that supp & j is contained in
a finite union of compact intervals Kj&1 �0( j&1), for each 1� j�k. (The
sets 0( j&1) are constructed with respect to +.) If the multiplication operator
is bounded in Pk, p (2, +), then it is bounded in Pk, p (2, ++&).

Proof. We have that there is a positive constant c such that

&xq&W k, p(2, +)�c &q&W k, p(2, +) ,

for every q # P. Then, it is enough to show that for some positive constant
c we have

&xq&W k, p(2, &)�c &q&W k, p(2, ++&) ,

for every q # P. Since (xq) ( j)=xq( j)+ jq( j&1) and

&xq( j)&L p(2, &j)
�K &q( j)&L p(2, &j)

�K &q&W k, p(2, ++&) ,

with K :=max[ |x|: x # 2], it is enough to show that for some positive
constant c we have

&q( j&1)&Lp(2, &j)
�c &q&W k, p(2, ++&) ,

for every 1� j�k and q # P. The hypothesis on supp &j , the finiteness of &
and Theorem A give

&q( j&1)&L p(2, &j)
=&q( j&1)&Lp(Kj&1, &j)

�c &q( j&1)&L�(Kj&1)

�c &q&W k, p(2, +)�c &q&W k, p(2, ++&) ,

for every 1� j�k and q # P. This finishes the proof of Theorem 4.2. K

Definition 15. Let us consider a vectorial measure + with absolutely
continuous part w. We define the p-admissible part +ad of + by d+ad

j :=
d(+j)s | 0(j)+wj dx for 0� j�k and 2ad :=�k

j=0 supp +ad
j .

We have the following consequence of Theorem 4.2.
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Corollary 4.2. For 1�p<�, let us consider a finite vectorial measure
+ with 2=2ad a compact set. Assume that (2, +ad) # C0 and that
supp (+j&+ad

j ) is contained in a finite union of compact intervals
Kj&1 �0( j&1), for each 1� j�k. If the multiplication operator is bounded
in Pk, p (2, +ad), then it is bounded in Pk, p (2, +).

Remark. If 2{2ad, we can use localization results, such as Theorems
4.9 and 4.10.

Theorem 4.3. Let us consider 1�p<� and a finite vectorial measure
+ with 2 a compact set. Assume that (2ad, +ad) # C0 and that for each
1� j�k we have +j (2"(Jj&1 _ Kj&1))=0, where Kj&1 is a finite union of
compact intervals contained in 0( j&1), and Jj&1 is a measurable set with
d+j= fj d+j&1 in Jj&1 and f j bounded. Then the multiplication operator is
bounded in Pk, p (2, +).

Proof. By Lemma 4.2 it is enough to show that there exists a positive
constant c such that

&q( j&1)&L p(2, +j)
�c &q&W k, p(2, +) ,

for every 1� j�k and q # P. We have by +j (2)<� and Theorem A

|
Kj&1

|q( j&1)| p d+j�c &q ( j&1)& p
L �(Kj&1)�c &q& p

W k, p(2ad, + ad )�c &q& p
W k, p(2, +) .

The hypothesis on Jj&1 gives

|
Jj&1

|q( j&1)| p d+j=|
Jj&1

|q( j&1)| p f j d+j&1

�c |
Jj&1

|q( j&1)| p d+j&1�c &q& p
W k, p(2, +) .

These two inequalities and

| |q( j&1)| p d+j�|
Kj&1

|q( j&1) | p d+j+|
Jj&1

|q( j&1)| p d+ j ,

give the desired result for every 1� j�k and q # P. This finishes the proof
of Theorem 4.3. K

Theorem 4.4. Let us consider 1<p<� and +=(+0 , ..., +k) a finite
vectorial measure such that 2 is a compact set and there exist '0>0, x0 # R
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and 0<k0�k with +j ([x0&'0 , x0+'0])=0 for k0< j�k. Let us assume
that x0 is neither right nor left (k0&1)-regular. If +k0

([x0])>0 and
+k0&1 ([x0])=0, then the multiplication operator is not bounded in
Pk, p (2, +).

Proof. Assume that the multiplication operator is bounded in
Pk, p (2, +). Lemma 4.2 gives that there exists a positive constant c such
that

&q(k0&1)&Lp(2, +k0
)�c &q&W k, p(2, +) ,

for every q # P. Consequently, since +k0
([x0])>0, we have that

|q(k0&1) (x0)|�c &q&W k, p(2, +) ,

for every q # P, but this is a contradiction with Theorem 3.3. K

Theorem 4.5. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R,
c>0, 0�k0<k and an open neighbourhood U of x0 such that

d+j+1 (x)�c |x&x0 | p d+j (x) ,

for x # U"[x0] and k0� j<k. If there exists i>k0 with +i ([x0])>0
and +i&1 ([x0])=0, then the multiplication operator is not bounded in
Pk, p (2, +).

Proof. Let us consider the vectorial finite measure &=(&0 , ..., &k)
defined as follows: &j :=0 for 0� j<k0 and &j :=+ j | [x0] for k0� j�k. The
measure +$ :=+&& satisfies +$k0

([x0])=0 and

d+$j+1 (x)�c |x&x0 | p d+$j (x) ,

for x # U and k0� j<k. Then Theorem 3.1 shows that there exists a
sequence of polynomials [rn] such that

(1) lim
n � �

&rn&W k, p(2, +$)=0,

(2) r (i&1)
n (x0)=1,

(3) r (m)
n (x0)=0 , if m{i&1, k0�m�k.
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We have limn � � &rn&W k, p(2, +)=0, by +i&1 ([x0])=0 and conditions (1)
and (3); conditions (2) and (3) give that

lim inf
n � �

&xrn&W k, p(2, +)

�+i ([x0])1�p lim
n � �

|x0 r (i)
n (x0)+ir (i&1)

n (x0)|=i+ i ([x0])1�p>0.

These two facts show that the multiplication operator is not bounded in
Pk, p (2, +). K

As a particular case we obtain

Corollary 4.3. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # R, an
open neighbourhood U of x0 and 0�k0<k with +j (U"[x0])=0 for
k0< j�k. If there exists i>k0 with +i ([x0])>0 and +i&1 ([x0])=0, then
the multiplication operator is not bounded in Pk, p (2, +).

The following is a modification of the Muckenhoupt inequality, which
can be proved by similar arguments.

Lemma 4.4. Let us consider 1�p<� and +0 , +1 finite measures in
[a, b] with w1 :=d+1 �dx. Assume that there exists a positive constant c0 with

"|
b

x
g(t) dt"Lp([a, b], +0)

�c0 &g&Lp([a, b], +1) ,

for any function g in C �
c ((a, b)). Then we have

sup
a<r<b

+0 ([a, r]) &w&1
1 &L 1�( p&1)([r, b])�c p

0 .

Theorem 4.6. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist 0<k0�k,
: # R and =, c>0 with

(1) sup
:<r<:+=

+k0
([:, r]) "\

d+k0

dx +
&1

"L 1�( p&1)([r, :+=])

=�,

(2) "|
:+=

x
g(t) (x&t)k0& j&1 dt"L p(2, +j)

�c &g&L p([:, :+=], +k0) , \g # C �
c ((:, :+=)) and 0� j<k0 ,

(3) *supp(+j | (:, :+=))<�, for k0< j�k (if k0<k).

Then the multiplication operator is not bounded in Pk, p (2, +).
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Remark. A similar result holds for [:&=, :] instead of [:, :+=].

Proof. By Lemma 4.4 and hypothesis (1) we know that there exist
functions gn # C �

c ((:, :+=)) such that

lim
n � �

&�:+=
x gn (t) dt&L p([:, :+=], +k0

)

&gn&Lp([:, :+=], +k0
)

=�.

If we define &=(&0 , ..., &k) by &j :=+j for 0� j�k0 and & j :=+ j |2"(:, :+=) for
k0< j�k (if k0<k), and

Gn (x) :=|
x

:+=
gn (t)

(x&t)k0&1

(k0&1)!
dt,

hypothesis (2) gives

&Gn&W k, p(2, &)� :
k0

j=0

&G ( j)
n &L p(2, +j)

�c0 &gn&Lp([:, :+=], +k0) .

Then we have

lim inf
n � �

&G (k0&1)
n &L p(2, +k0)

&Gn&W k, p(2, &)

� lim
n � �

&�:+=
x gn (t) dt&Lp([:, :+=], +k0)

c0 &gn&L p([:, :+=], +k0
)

=� .

Since 2 is compact, Bernstein's proof of the Weierstrass Theorem shows
that we can approximate Gn by polynomials with the norm

& f &A := :
k

j=0

& f ( j)&L �(2) ,

and hence with the norm

& f &B :=& f &W k, p(2, &)+& f (k0&1)&L p(2, +k0
) ,

since + and & are finite. Consequently there exists a sequence of polyno-
mials [qn] with

lim
n � �

&q (k0&1)
n &L p(2, +k0

)

&qn&W k, p(2, &)

=� .

If k0<k, by hypothesis (3) we can consider

[x1 , ..., xm]= .
k

j=k0+1

supp (+j | (:, :+=)) .
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If we apply Corollary 3.3 m times we obtain that there exists a sequence of
polynomials [rn] with

lim
n � �

&r (k0&1)
n &L p(2, +k0

)

&rn &W k, p(2, &)

=�,

and r ( j)
n (xi)=0 for k0< j�k and 1�i�m. Therefore

lim
n � �

&r (k0&1)
n &L p(2, +k0

)

&rn &W k, p(2, +)

=�.

Now Lemma 4.2 finishes the proof. K

Corollary 4.4. Given a, b # R, a<b and 1�p<�, there exists a
p-admissible vectorial measure + such that P is dense in W k, p ([a, b], +),
M is well defined in W k, p ([a, b], +) and it is not well defined in
Pk, p ([a, b], +).

Proof. Fix c # (a, b) and define the absolutely continuous vectorial
measure + as follows: wj :=1 in (c, b] for 0� j�k, wj :=0 in [a, c] for
0� j<k, and wk is a weight in [a, c] as in the example after Proposition
4.1. + is a p-admissible measure since it is absolutely continuous. It is easy
to check that K([a, b], +)=[0] and then Theorem C shows that M is
well defined in W k, p ([a, b], +). Theorem 4.6 with k0=k and [:, :+=]=
[a, c] shows that M is not bounded in Pk, p ([a, b], +); hence it is not well
defined in Pk, p ([a, b], +) by Lemma 4.1. Finally, Theorem 3.1 in [R]
shows that P is dense in W k, p ([a, b], +), since wk # Bp ((a, b)). K

We present here a case in which the condition + # ESD is equivalent to
M bounded.

Theorem 4.7. Let us consider 1�p<� and +=(+0 , ..., +k) a finite vec-
torial measure with 2 a compact set. Assume that * supp +j<� for
1� j�k. Then, the multiplication operator is bounded in Pk, p (2, +) if and
only if + # ESD.

Proof. Let us assume that + � ESD. Then there exist x0 # 2 and
0<i�k such that +i ([x0])>0 and + i&1 ([x0])=0, since *supp +j<�
for 1� j�k. This hypothesis also shows that there exists a neighbourhood
U of x0 with +j (U"[x0])=0 for 1� j�k. Then Corollary 4.3 with k0=0
gives that the multiplication operator is not bounded in Pk, p (2, +).

If + # ESD, then the proof of Theorem 4.1 shows that M is bounded in
Pk, p (2, +). K
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Theorem C shows that the condition K(2, +) { [0] implies that M
is not bounded in Pk, p (2, +) for p-admissible measures + with
W k, p (2, +)=P� . If + is not p-admissible, we can apply the following result.

Theorem 4.8. Let us consider 1�p<�, +=(+0 , ..., +k) a finite vec-
torial measure with 2 a compact set and a connected component (:, ;) of
01 _ } } } _ 0k . Assume that +0 ([:])=+0 ([;])=0, +=+ad in [:, ;],
K([:, ;], +){[0], and that there exist c, =>0 with

d+ j+1 (x)�c |x&:| p d+ j (x) , x # [:&=, :],

d+ j+1 (x)�c |x&;| p d+ j (x) , x # [;, ;+=],

for 0� j<k. Then M is not bounded in Pk, p (2, +).

Proof. Let us consider a function q # K([:, ;], +) which is not identi-
cally zero. It is easy to see that q # Pk&1 (see the arguments in the proof
of Proposition 3.1). Without loss of generality we can assume that
deg q=max[deg r: r # K([:, ;], +)]. Then we have &q&W k, p([:, ;], +)=0
and &xq&W k, p([:, ;], +)>0, since xq � K([:, ;], +). The hypotheses and
Lemma 3.1 show that there exist gn # C �

c (R) with

lim
n � �

&gn&W k, p(2, +)=&q&W k, p([:, ;], +)=0

and

&xgn&W k, p(2, +)�&xq&W k, p([:, ;], +)>0

(it is enough to multiply q by functions in C �
c (R) with value 1 in [:, ;],

as in the proof of Theorem 3.1). The proof is finished since gn and its
derivatives can be approximated uniformly by polynomials. K

We also have localization results for the multiplication operator.

Theorem 4.9. Let us consider 1�p<� and +=(+0 , ..., +k) a finite vec-
torial measure with 2 a compact set. Assume that for every x0 # 2 there exist
=, c>0 (which can depend on x0) such that

&xq&W k, p([x0&=, x0+=], +)�c &q&W k, p([x0&=, x0+=], +) ,

for every q # P. Then the multiplication operator is bounded in Pk, p (2, +).

The proof of this result is immediate. We have a partial converse of
Theorem 4.9.

195MULTIPLICATION OPERATOR IN SOBOLEV SPACES



Theorem 4.10. Let us consider 1�p<� and +=(+0 , ..., +k) a finite
vectorial measure with 2 a compact set. Assume that there exist x0 # 2 and
=0>0 with + | [x0&=0 , x0+=0] p-admissible and ([x0&=0 , x0+=0], +) # C0 . If
the multiplication operator is bounded in Pk, p (2, +), then for each 0<=<=0

there exists c>0 such that

&xq&W k, p([x0&=, x0+=], +)�c &q&W k, p([x0&=0 , x0+=0], +) ,

for every q # P.

Proof. Let us fix 0<=<=0 . We can choose compact intervals J1 �
[x0&=0 , x0&=], J2 �[x0+=, x0+=0] and integers 0�k1 , k2�k satisfying
for m=1, 2, Jm �0(km&1), if km>0, and +j (Jm)=0 for km< j�k, if km<k.
If K :=J1 _ J2 , we have +j (K)<� for 0� j�k, since + is finite.

Take a fixed function . # C�
c ((x0&=0 , x0+=0)) with 0�.�1, .=1 in

[x0&=, x0+=] and supp .$�K. Theorem 3.2 shows that there exists a
positive constant c such that

&.g&W k, p(2, +)�c &g&W k, p([x0&=0 , x0+=0], +) , (4.4)

for every g # Ck (R). Since 2 is a compact set, Bernstein's proof of the
Weierstrass Theorem gives that &xg&W k, p(2, +)�&M& &g&W k, p(2, +) , for every
g # Ck (R). Consequently, .=1 in [x0&=, x0+=] and (4.4) give

&xq&W k, p([x0&=, x0+=], +)�&x.q&W k, p(2, +)

�&M& &.q&W k, p(2, +)�c &q&W k, p([x0&=0 , x0+=0], +) ,

for every q # P. This finishes the proof of Theorem 4.10. K

Theorem 4.10 is not true without the hypothesis ([x0&=0 , x0+=0], +)
# C0 , as is shown by the following example.

Example. Let us consider the vectorial measure +=(+0 , ..., +k) with
d+0 :=/

[0, 1] _ [2, 3]
dx, d+k :=/

[0, 3]
dx, and +j :=0 for 0< j<k if k>1.

Theorems 5.1 and 5.2 in [RARP2] show that M is bounded in
W k, p ([0, 3], +), since + is a measure of type 1 in [0, 3] (see Definition 10
in [RARP2]) and K([0, 3], +)=[0]. However, for q(x) :=xk&1 we have
for any 0<'<1�2, &xq&W k, p([1+', 2&'], +)=&k!&L p([1+', 2&'])>0 and
&q&W k, p([1, 2], +)=0.
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